I-4 / Crosstown Connector Interchange Justification Report

TAMPA INTERSTATE STUDY

State Project No. 99007-1402, WPI No. 7140004, FAP No. IR-9999(43)

Prepared For FLORIDA DEPARTMENT OF TRANSPORTATION

Prepared By GREINER, INC.

In Association With

GANNETT FLEMING TRANSPORTATION ENGINEERS TEXAS TRANSPORTATION INSTITUTE KNIGHT APPRAISAL SERVICES, INC.

REVISED NOVEMBER 1992

f Greiner, Inc	Tempa, Florida
Contrect Exaber	Project
C2380	TIS IJR
	compet review and t
	schnitted to the clical . I Prolighany
Grean SP	11-30-92
Signature)	Liete

TABLE OF CONTENTS

-

· .--'

·- ·'

-

.....)

..

	Page
List of Tables List of Exhibits	ii
	iv
INTRODUCTION	1
DESCRIPTION OF THE PROPOSED ACTION	2
JUSTIFICATION OF THE PROPOSED ACTION	4
Area Street System	5
Existing Conditions	6
Existing Traffic Volumes	7
Existing Traffic Operations	8
Traffic Safety	14
Traffic Projections	20
Traffic Operations Analyses	. 21
Opening Year (1995) Traffic Operations	22
Phase I Analysis	22
No-Build Analysis	24
Phase I Interim Improvement Analysis	28
Design Year (2010) Traffic Operations	34
Phase II Analysis	34
No-Build Analysis	- 38
Alternative Routes	46
Cost-Effectiveness Analysis	47
Methodology and Parameters	48
Present Value	48
Discount Rate	49
Time Period of the Analysis	50
Measures of Economic Desirability	51
Determination of Benefits and Costs "∆U" User Benefits	52
	52
Vehicle Operating Costs Vehicle Travel Time Costs	53
Accident Costs	53
Total Road User Costs	54
"ΔI" Investment Costs	55
"ΔM" Maintenance Costs	56
"∆R" Residual Value	57 57
Results of the Analysis	58
Environmental Overview	58 60
Social Environment	62
Cultural Environment	63
Natural Environment	64
Physical Environment	65

TABLE OF CONTENTS (Continued)

FINANCIAL ACTION PLAN

SUMMARY AND ACTION

APPENDICES

Ĺ.

Appendix A - Existing Conditions (1988) Capacity Analyses

Appendix B - Opening Year (1995) Phase I Capacity Analyses

Appendix C - Opening Year (1995) No-Build Capacity Analyses

Appendix D - Opening Year (1995) Phase I Interim Improvement Capacity Analyses

Appendix E - Design Year (2010) Phase II Capacity Analyses

Appendix F - Design Year (2010) No-Build Capacity Analyses

<u>Page</u>

67

LIST OF TABLES

--

<u>Table No.</u>	Title	Page
1	Levels of Service for Merge/Diverge Volumes and Speeds in Weaving Sections	9
2	Existing I-4 Freeway Operations Analysis Summary - A.M. Peak Hour	10
3	Existing I-4 Freeway Operations Analysis Summary - P.M. Peak Hour	11
4	Existing I-4 Ramp Terminal Operations Analysis Summary	13
5	Accident Summary - I-4 From East of 14th Street to East of 19th Street	15
6	Accident Summary - I-4 From East of 19th Street to East of 26th Street	16
7	Accident Summary - I-4 From East of 26th Street to East of 34th Street	17
8	Accident Summary - I-4 From East of 34th Street to East of 40th Street	18
9	Accident Summary - I-4 From East of 40th Street to East of 50th Street	19
10	Opening Year (1995) I-4/Crosstown Connector Freeway Operations Analysis Summary - Phase 1	25
11	No-Build (1995) I-4 Freeway Operations Analysis Summary	26
12	Opening Year (1995) I-4/Crosstown Connector Freeway Operations Analysis Summary - Phase I Interim Improvement	31
13	Design Year (2010) I-4/Crosstown Connector Freeway Operations Analysis Summary - Phase II	36
14	Design Year (2010) I-4 Ramp Terminal Operations Analysis Summary - A.M. Peak Hour	39
15	Design Year (2010) I-4 Ramp Terminal Operations Analysis Summary - P.M. Peak Hour	40
16	No-Build (2010) I-4 Freeway Operations Analysis Summary	42

LIST OF TABLES (continued)

<u>Table No.</u>	Title	<u>Page</u>
17	No-Build (2010) I-4 Ramp Terminal Operations Analysis Summary - A.M. Peak Hour	44
18	No-Build (2010) I-4 Ramp Terminal Operations Analysis Summary - P.M. Peak Hour	45
19	Road User Costs	55
20	Road User Benefits	56
21	Investment Costs	57
22	Cost-Effectiveness Analysis - Net Present Value and Benefit/Cost Ratio	59
23	Cost-Effectiveness Analysis Summary	61

LIST OF EXHIBITS

· ·'

.

. .

.

<u>Exhibit No.</u>	<u>Title</u>	<u>Follows</u>
1	Location Map	Page 2
2	Existing Mainline and Ramp Laneage	Page 5
3	Existing (1988) Traffic Volumes	Page 7
4	Existing (1988) Peak Hour Turning Movements	Exhibit 3
5	Phase I Concept Opening Year (1995) Mainline and Ramp Laneage	Page 22
6	Phase I Concept Opening Year (1995) Traffic Volumes	Page 23
7	No-Build Opening Year (1995) Traffic Volumes	Page 25
8	Phase I Interim Improvement Concept Opening Year (1995) Mainline and Ramp Laneage	Page 30
9	Phase II Concept Design Year (2010) Mainline and Ramp Laneage	Page 34
10	Phase II Concept Design Year (2010) Traffic Volumes	Exhibit 9
11	Phase II Concept Design Year (2010) Peak Hour Turning Movements	Exhibit 10
12	No-Build Design Year (2010) Mainline and Ramp Laneage	Page 40
13	No-Build Design Year (2010) Traffic Volumes	Page 41
14	No-Build Design Year (2010) Peak Hour Turning Movements	Exhibit 13

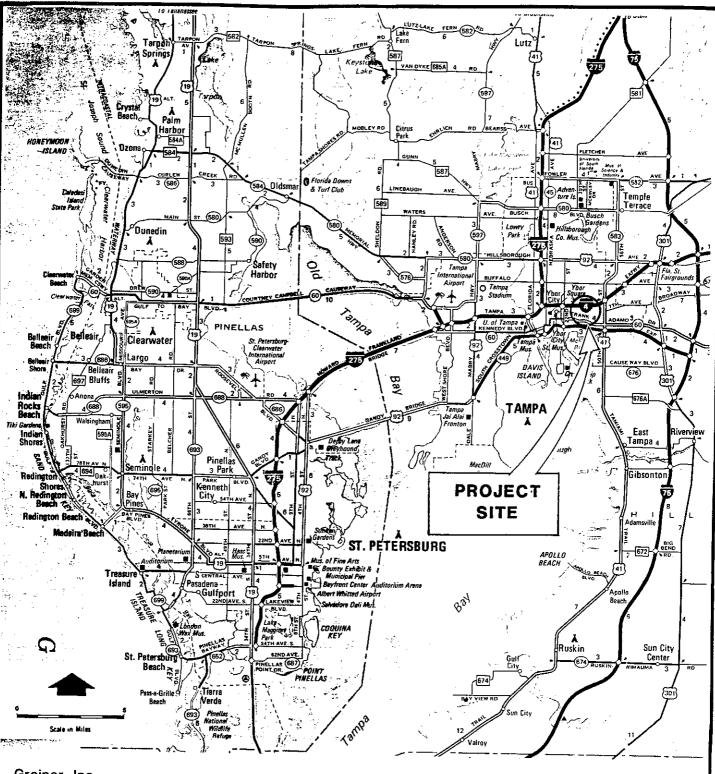
INTRODUCTION

The Tampa Interstate Study (TIS) provides for the reconstruction of Interstate 275 (I-275) and Interstate 4 (I-4) in Hillsborough County. In conjunction with TIS and previous studies conducted by the Tampa Hillsborough County Expressway Authority (THCEA), the need for a freeway to freeway connection between I-4 and the South Crosstown Expressway has been identified (the Crosstown Connector). The proposed interchange on I-4 with the Crosstown Connector, the Crosstown Connector interchange, has been included in the TIS study and is in the year 2010 Long Range Transportation Plan for Hillsborough County.

Greiner Inc. has been requested by the Florida Department of Transportation (FDOT) to analyze the impact of this new interchange on the operation and safety of I-4 and the South Crosstown Expressway, as well as justify the need for the new interchange.

The purpose of this report is to present the FDOT and the Federal Highway Administration (FHWA) with the documentation to justify the new interchange. To accomplish this, the report discusses the need for the project and the project's relationship to the area transportation system as well as the traffic operations, safety and capacity impacts of the interchange. The cost effectiveness of the proposed interchange is also addressed.

The appendices of this document contain support documentation for the traffic operations calculations.


DESCRIPTION OF THE PROPOSED ACTION

The proposed project site for the Crosstown Connector is located east of the Tampa Central Business District (CBD) and the I-4/I-275 interchange. The proposed Crosstown Connector is located east of the C.S.X. Transportation railroad corridor and west of 31st Street between the existing I-4 interchanges at 21st/22nd Streets and 40th Street. The proposed Crosstown Connector extends from I-4 southward to the South Crosstown Expressway. The connector interchanges with the South Crosstown Expressway between the existing interchanges at 22nd Street and 39th Street. Exhibit 1 illustrates the project location.

The location of the Crosstown Connector, including the interchanges, was the subject of a separate study conducted for THCEA. The initial investigations to locate the Connector examined the area from the Howard/Armenia Avenue corridor east through 50th Street and involved using existing street alignments and interchanges as well as new alignments and interchanges. The initial evaluation of alternative locations and feasibility of the Connector are documented in the following reports:

- * Proposed I-275/I-4 Crosstown Expressway Connector-Technical Memorandum; Howard, Needles, Tammen and Bergendoff; April, 1986.
- * Feasibility Study of Extensions to the Tampa South Crosstown Expressway; Parsons, Brinckerhoff, Quade and Douglas; August, 1987.

Further documentation of the Connector location will be included in the environmental document and engineering reports currently being prepared by THCEA under their ongoing Project Development and Environmental (PD&E) Study for the Connector. For purposes of this evaluation and TIS, the location of the Connector is assumed to be fixed.

Greiner, Inc.

FLORIDA DEPARTMENT OF TRANSPORTATION

INTERCHANGE JUSTIFICATION REPORT I-4/CROSSTOWN CONNECTOR Hillsborough County, Florida

LOCATION MAP

EXHIBIT 1

The proposed Crosstown Connector interchange with I-4 has been developed in conjunction with the proposed improvements to I-4 and I-275 developed under TIS. The TIS Master Plan in the project area includes a basic eight-lane express freeway system comprised of six general use freeway lanes and two High Occupancy Vehicle (HOV) lanes on I-4. In addition, there is a two- to three-lane local access freeway system paralleling the express freeway lanes. The proposed Crosstown Connector is a six-lane freeway section. The Connector provides access to/from the local access freeway lanes to/from the east and to/from the express and local access freeway lanes to and from the west. The Crosstown Connector provides a toll-free exit and entrance ramp to and from Adamo Drive (S.R. 60) and provides direct connections to and from an eight-lane freeway section on the South Crosstown Expressway. The concept is illustrated in the appended plan set on 100 scale aerial photography.

The proposed Crosstown Connector will provide direct freeway to freeway access between I-4 and the South Crosstown Expressway. This connection will improve traffic operations on the north-south local streets in the project area as well as along the two freeway corridors. In addition, as a result of the direct connection between I-4 and the South Crosstown Expressway, the growing suburban communities are provided improved access to and from area business districts.

An additional function of the proposed Crosstown Connector is its role as a system maintenance of traffic route during the reconstruction of the Interstate. The Crosstown Connector will provide an alternative route for traffic to access the CBD during the reconstruction of the downtown and I-4/I-275 interchanges. Without the Connector, during the reconstruction traffic accessing the CBD would likely be diverted to the arterial street system including 21st, 22nd, 40th and 50th Streets. Due

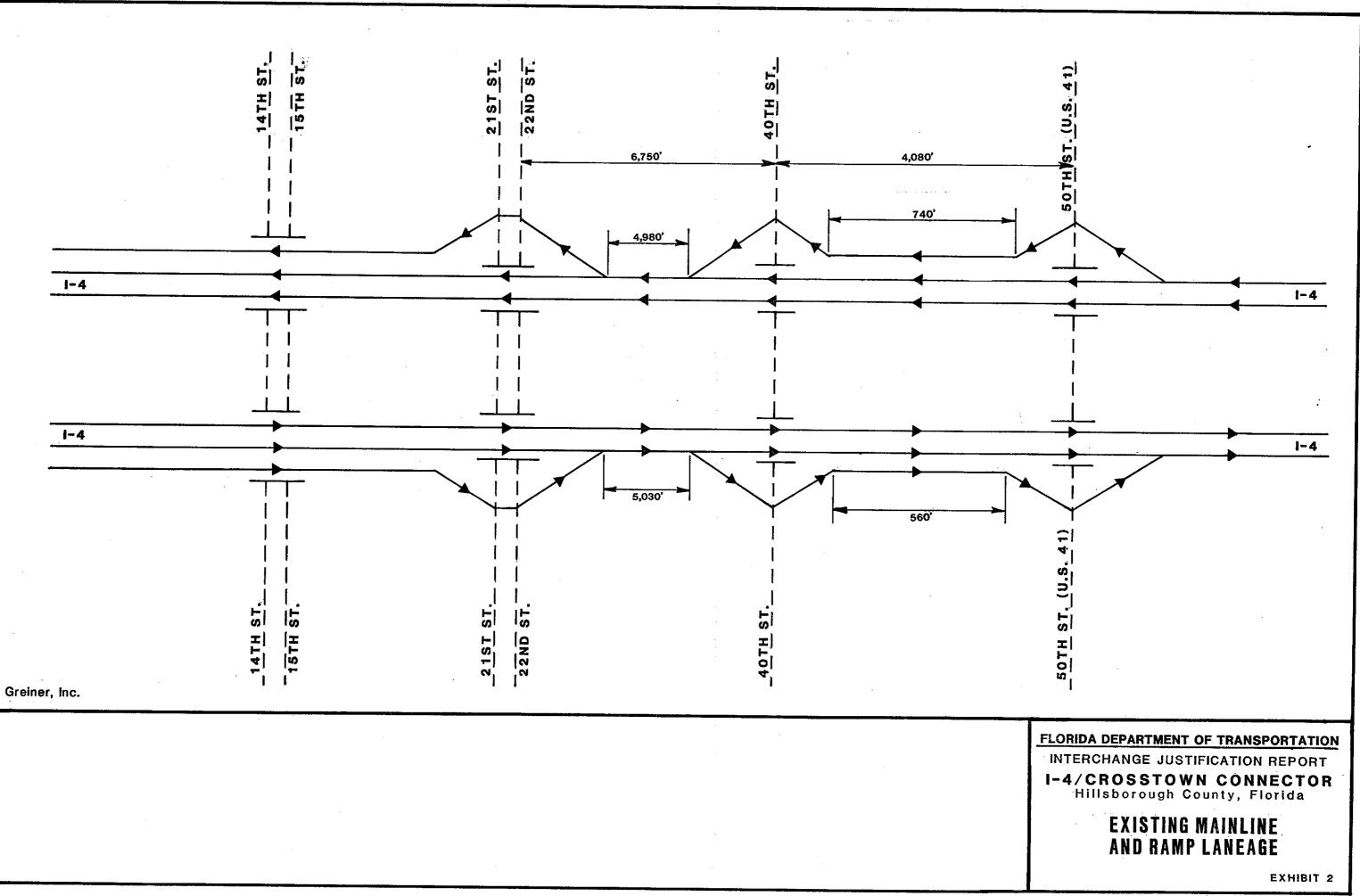
to the limited available capacity on these arterials, severe congestion would result. Therefore, the Connector is a vital link for both the ultimate freeway system in Tampa as well as a system maintenance of traffic route during the reconstruction of the freeway system.

JUSTIFICATION OF THE PROPOSED ACTION

Hillsborough County is located in one of the fastest growing metropolitan areas in the country. In 1985, Hillsborough County had an established population of 748,507. Population projections indicate that approximately 546,000 additional people will live and work in Hillsborough County over the next 25 years (Year 2010).

The population growth projected for Hillsborough County and the Tampa Bay urban area will increase the travel demand on the area's roadway system. Traffic projections for the year 2010 indicate that improvements to the I-275 and I-4 corridors are needed to meet this travel demand. The TIS Master Plan to upgrade I-4 and I-275 will improve these major east-west and north-south transportation corridors. The South Crosstown Expressway, with the proposed western extension to the Gandy Bridge, the proposed eastern extension through Brandon to S.R. 60 and overall upgrading and widening in high volume areas, will provide additional capacity for east-west travel south of the I-275/I-4 corridor. In conjunction with these improvements, the proposed Crosstown Connector interchange provides a vital freeway to freeway link between these two major transportation corridors. Traffic projections for the design year 2010 indicate that with the TIS Master Plan improvements in place the Connector will carry approximately 90,000 vehicles per day.

The following sections of this report provide the engineering justification of the proposed project. The issues addressed include the existing (1988), opening year (1995), and design year (2010) traffic volumes, traffic operations, safety, cost-effectiveness and implementation of the proposed action. Due to the nature of the Interstate's function to carry interregional traffic, particular attention has been focused on the impacts that the proposed interchange will have on the I-4 traffic operations. Also of importance, and addressed herein, is the impact on the adjacent street system.


AREA STREET SYSTEM

As previously shown in Exhibit 1, I-4 and the South Crosstown Expressway run primarily east and west in the vicinity of the proposed Crosstown Connector. The Connector is proposed to run north-south, connecting the two roadways. The following briefly describes the existing facilities and planned improvements.

Interstate 4 - runs primarily east-west in the vicinity of the proposed project. East of 40th Street, I-4 takes a northeasterly route through Hillsborough County and continues in a northeasterly direction through Orlando and continuing to Daytona Beach on Florida's east coast. I-4 terminates west of the proposed project area at an interchange with I-275. I-4 is generally a four-lane divided, limited access freeway with the exception of the section west of 21st/22nd Streets, which is a six-lane divided section. A lane drop eastbound and a lane add westbound occurs on the west side of the existing 21st/22nd Street interchange. The existing laneage on I-4 and the configuration of the ramps is illustrated schematically on Exhibit 2.

The segment of I-4 between I-275 and 50th Street (U.S. 41) covers a distance of approximately 3.2 miles. There are three existing freeway interchanges within the study area. Split-diamond interchanges are currently provided at 21st/22nd Streets and 50th Street/Columbus Drive. A diamond interchange is located at 40th Street.

The South Crosstown Expressway - is a four-lane divided, limited access east-west toll road. Currently, the South Crosstown Expressway extends from Gandy Boulevard/Dale Mabry Highway north and eastward, through south Tampa and the southern portion of the Tampa Central Business District (CBD). It continues eastward from the CBD to I-75. The long range plans for the South Crosstown Expressway

Grein

include a western extension to the Gandy Bridge, providing a limited access connection to Pinellas County and an eastern extension through or around Brandon to S.R. 60. The South Crosstown Expressway improvement plan includes upgrading to a six-lane facility from 39th Street east to 78th Street. An eight-lane facility is currently proposed from Kennedy Boulevard east to 39th Street.

Adamo Drive (S.R. 60) - is an east-west principal arterial that traverses all of Hillsborough County. Between 13th Street and 50th Street, Adamo Drive is located approximately two-thirds of a mile south of I-4 and one-sixteenth of a mile north of the South Crosstown Expressway. In this area, Adamo Drive is currently a four-lane divided facility. The Long Range Highway Plan for Hillsborough County includes improving Adamo Drive to a six-lane divided facility.

14th/15th Streets - are a north-south one-way pair located east of I-275. Fourteenth Street is a two-lane one-way southbound facility and 15th Street is a three-lane oneway northbound facility. South of the I-4 overpass these roads merge and connect with the Nick Nuccio Parkway (a four-lane divided facility) south of 7th Avenue. Along with the South Crosstown Expressway and Adamo Drive, Nick Nuccio Parkway provides access to the east side of the Tampa CBD.

<u>21st/22nd Streets</u> - are a north-south one-way pair located east of 14th/15th Streets. Twenty-first Street is a three-lane one-way southbound facility. North of I-4, 22nd Street is a two-lane one-way northbound facility while south of I-4 it is a three-lane one-way northbound facility. Just north of the interchange with the South Crosstown Expressway, 22nd Street becomes a four-lane two-way facility. This facility serves as the primary access to/from the Port of Tampa.

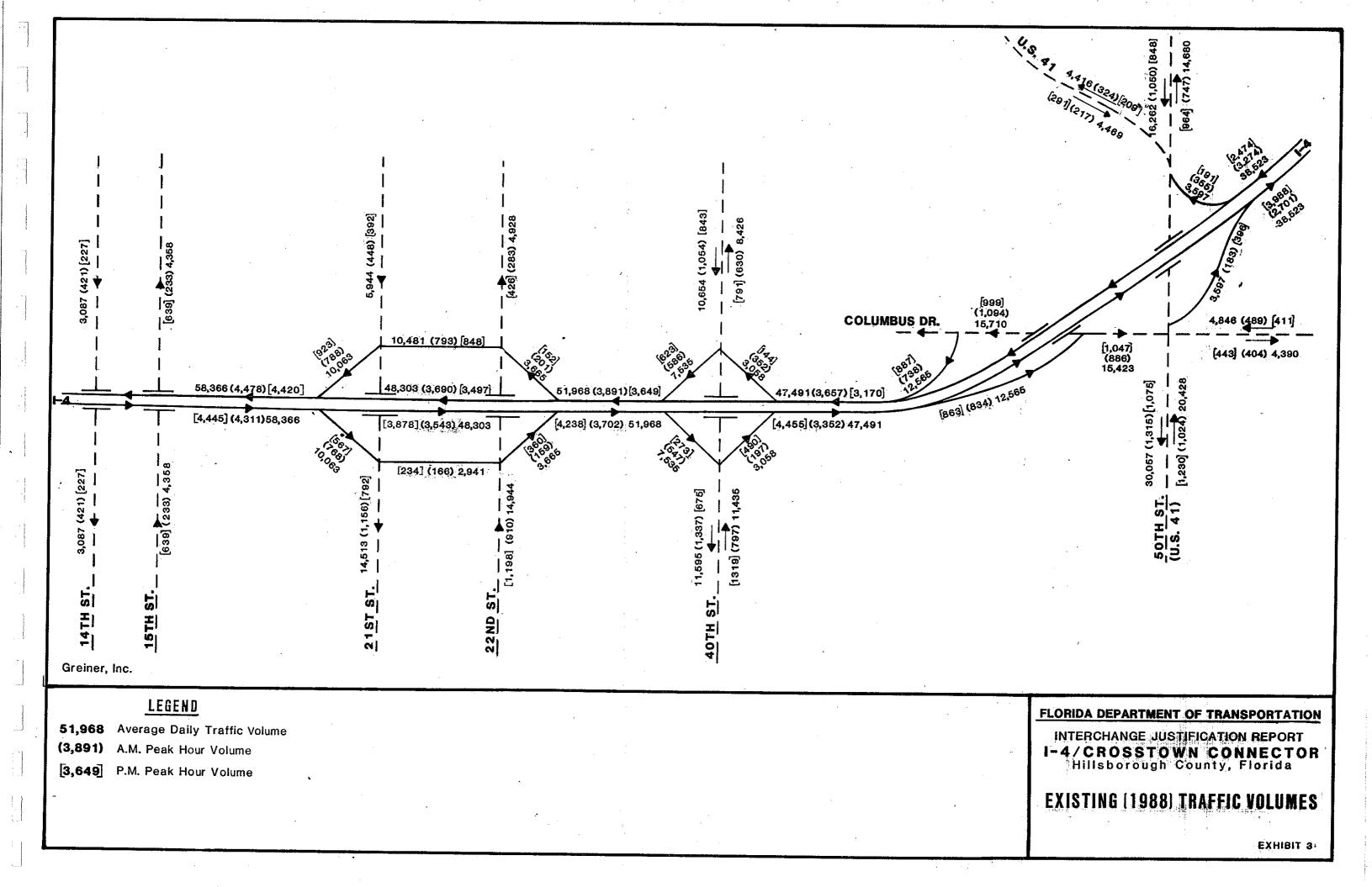
<u>40th Street</u> - is a six-lane north-south arterial that has its southern terminus at 7th Avenue (S.R. 574), approximately one-third of a mile south of I-4. Approximately onetenth of a mile south of the I-4 interchange, at 11th Avenue, 39th Street merges with 40th Street. Thirty-ninth Street extends south of 7th Avenue as a four-lane arterial and terminates at its interchange with the South Crosstown Expressway.

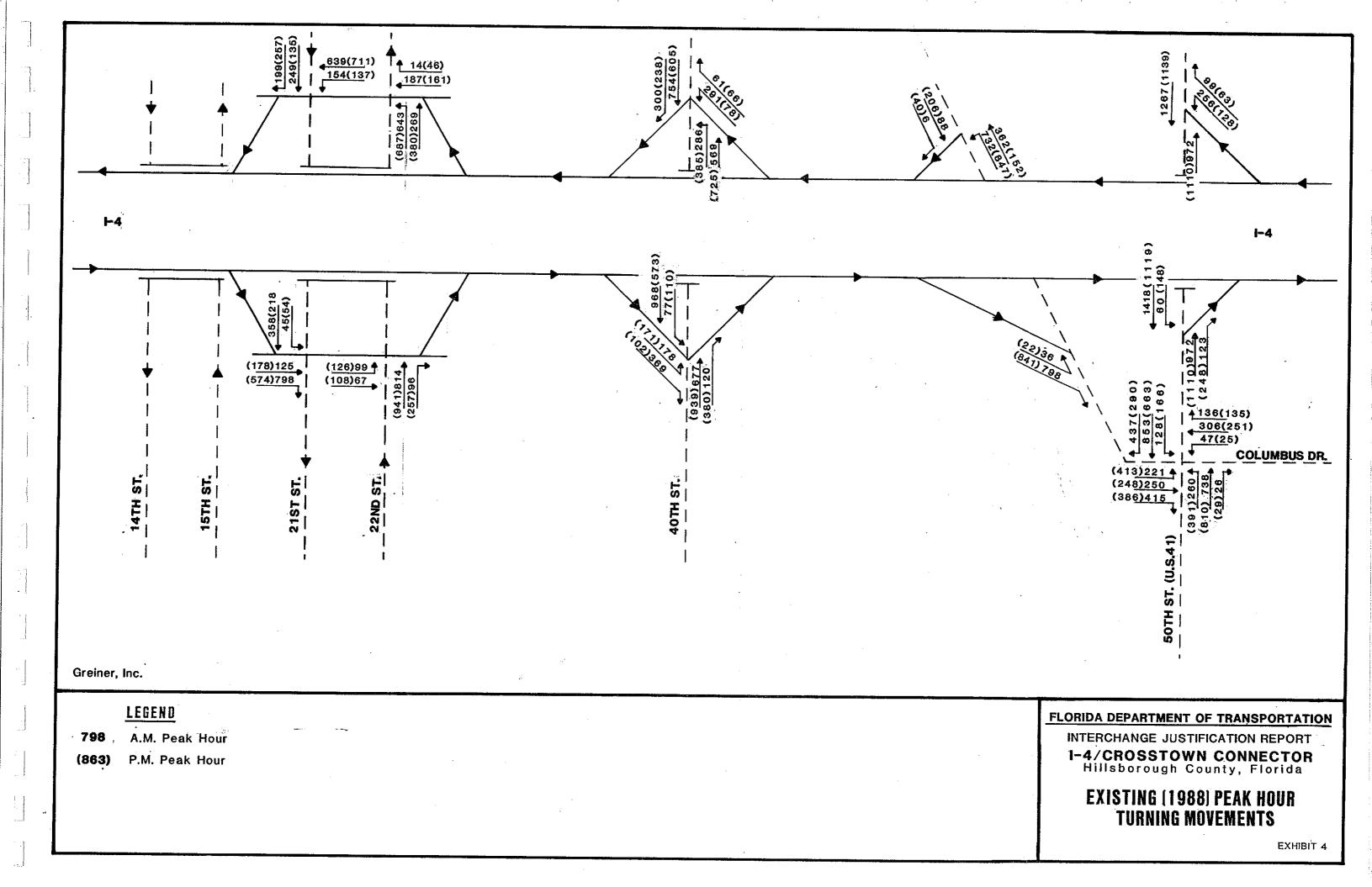
50th Street (U.S. 41) - is a north-south arterial paralleling 39th/40th Street to the east. North of the I-4 interchange, 50th Street is a four-lane arterial that diverges to form Melburne Boulevard (Business U.S. 41) which runs in a northwesterly direction and connects with 40th Street. South of the I-4 interchange, 50th Street is a six-lane arterial that extends south of the interchange with the Crosstown Expressway and continues southward through the remaining portion of Hillsborough County.

EXISTING CONDITIONS

To provide a baseline condition, the existing conditions on I-4 were evaluated. This involved an inventory of existing geometric and traffic conditions, an evaluation of peak hour traffic operations and an assessment of traffic safety. The following discusses each of these.

Existing Traffic Volumes


Existing average daily traffic (ADT) and peak hour (a.m. and p.m.) volumes were obtained from traffic counts conducted in the project area by Greiner, Inc. At selected locations, 24-hour machine traffic counts (directional volumes in 15-minute increments) were conducted on I-4 and adjacent arterials. The daily traffic counts were collected at the following locations:


I-4 Mainline west of 21st Street I-4 Mainline west of 50th Street Eastbound I-4 off-ramp to 21st Street Eastbound I-4 on-ramp from 22nd Street Eastbound I-4 on- and off-ramps at 40th Street Eastbound I-4 off-ramp to Columbus Drive Eastbound I-4 on-ramp from 50th Street Westbound I-4 off-ramp to 50th Street Westbound I-4 on-ramp from Columbus Drive Westbound I-4 on- and off-ramps at 40th Street Westbound I-4 off-ramp to 22nd Street Westbound I-4 on-ramp from 21st Street 14th Street (at I-4 overpass) 15th Street (at I-4 overpass) 21st Street (north and south of I-4 ramps) 22nd Street (north and south of I-4 ramps) 40th Street (north and south of I-4 ramps) 50th Street (north and south of I-4 ramps)

Peak hour turning movement counts were conducted from 7 to 9 a.m. and 4 to 6 p.m. at the ramp terminals at the following interchanges:

I-4 and 21st/22nd Streets I-4 and 40th Street I-4 and 50th Street/Columbus Drive

The existing ADT's and peak hour (a.m. and p.m.) traffic volumes on I-4 are illustrated on Exhibit 3. The existing a.m. and p.m. peak hour turning movements at the I-4 ramp terminals are illustrated on Exhibit 4.

Existing Traffic Operations

Using the existing peak hour volumes, traffic operations analyses were conducted for the mainline of I-4 from west of 21st Street to east of 50th Street.

The weaving section speeds and the ramp junction merge and diverge volumes were estimated using the methodologies described in Chapter 4, Weaving Areas, and Chapter 5, Ramps and Ramp Junctions, of the 1985 <u>Highway Capacity Manual</u> (HCM). To be consistent with the operations analyses conducted for TIS, the levels of service for the merge and diverge areas in this study were determined using the values developed for TIS and previously approved by FHWA. In addition, the levels of service for weaving and non-weaving speeds in weaving sections that were used for TIS were also used in this study. Table 1 lists the merge, diverge and weaving section levels of service used in the operations analyses.

The capacity calculations for the ramp junctions are contained in Appendix A.

Tables 2 and 3 summarize the level of service for existing conditions on I-4 in the a.m. and p.m. peak hours, respectively. As seen in the tables, the existing operating conditions on I-4 include several merge/diverge areas and weaving areas operating at unacceptable levels of service.

In the a.m. peak hour the westbound on-ramp from 40th Street operates at Level of Service E (LOS E). This is primarily due to the high volume (3,305 vehicles per hour) on the freeway upstream of the on-ramp. In addition, the weaving sections between the 40th Street and Columbus Drive/50th Street interchanges operate at LOS F in both the eastbound and westbound directions. This is due to the short lengths of the

•

•

•

.

1

LEVELS OF SERVICE FOR MERGE/DIVERGE VOLUMES AND SPEEDS IN WEAVING SECTIONS I-4/Crosstown Connector

MERGE/DIVERGE AREAS

<u>LOS</u>	Merge Volume (in pcph)	Diverge Volume (in pcph)
Α	<u>≤</u> 660	<u><</u> 715
В	<u>≤</u> 1,100	<u>≤</u> 1,155
С	<u>≺</u> 1,595	<u><</u> 1,650
D	≤ 1,925	<u>≤</u> 1,980
Ε	<u>≤</u> 2,200	<u>≤</u> 2,200

WEAVING SECTIONS

		Design Speed	<u> </u>	Design Speed
<u>LOS</u>	Weaving Speed <u>Sw (in mph)</u>	Non-Weaving Speed <u>Snw (in mph)</u>	Weaving Speed <u>Sw (in mph)</u>	Non-Weaving Speed Snw (in mph)
Α	<u>≥</u> 50.0	<u>≥</u> 54.0	<u>></u> 55.0	<u>≥</u> 60.0
В	<u>≥</u> 45.0	<u>≥</u> 48.0	<u>≥</u> 50.0	<u>≥</u> 54.0
С	<u>≥</u> 40.0	≥ 42.0	<u>≥</u> 45.0	<u>></u> 48.0
D	<u>≥</u> 35.0	≥ 35.0	≥ 40.0	<u>≥</u> 42.0
Ε	<u>≥</u> 30.0	<u>≥</u> 30.0	≥ 35.0	<u>≥</u> 35.0
F	< 30.0	< 30.0	< 35.0	< 35.0

EXISTING I-4 FREEWAY OPERATIONS ANALYSIS SUMMARY - AM PEAK HOUR I-4/Crosstown Connector

				Merge Area			Diverge Area				Weaving Area	g Area	
ات	Location	Freeway Volume (in vph) ¹	Ramp Volume (in vph)	Merge Volume <u>(in pcph)</u>	Merge Level of <u>Service</u>	Ramp Volume (in vph)	Diverge Volume (in pcph)	Diverge Level of <u>Service</u>	Type of <u>Neave</u>	Weaving Speed (in moh)	Weaving Level of <u>Service</u>	Non-Weaving Non-Weaving Speed Level of (in moh) Service	Non-Weaving Level of <u>Service</u>
Ш	EB I-4 off-ramp to 21st Street	4,311				768	825	æ					
ш	EB I-4 on-ramp from 22nd Street	3,543	159	1,646	۵								
μi	EB 1-4 off-ramp to 40th Street	3,702				247	1,886	۵					
ш	EB 1-4 between 40th Street and Columbus Drive/50th Street	3,352							A	31.6	Ľ.	45.1	۵
<u>۳</u> 10	EB I-4 on-ramp from Columbus Drive/50th Street	2,518	183	1,270	U								
3	WB I-4 off-ramp to Calumbus Drive/50th Street	3,274				355	1,615	U					
3	WB I-4 between Columbus Drive/ 50th Street and 40th Street	3,657							A	33.7	u.	46.7	۵
3	WB 1-4 on-ramp from 40th Street	3,305	586	1,962	ш								
3	WB I-4 off-ramp to 22nd Street	3,891				201	1,768	۵					
3	WB I-4 on ramp from 21st Street	3,690	788	846	8								

1 Refers to the freeway volume that occurs before merge or diverge. vph = Vehicles per hour pcph = Passenger cars per hour mph = Miles per hour

. . . .

•.'

Ì ļ

. •

•

ł

: ł

....

3 . . . | !

EXISTING I-4 FREEWAY OPERATIONS ANALYSIS SUMMARY - PM PEAK HOUR I-4/Crosstown Connector

			Merge Area			Diverge Area				Weaving Area	g Årea	
Location	Freeway Volume <u>(in vph)</u> 1	Ramp Volume <u>(in vph)</u>	Merge Volume <u>(in pcph)</u>	Merge Level of <u>Service</u>	Ramp Volume (in vph)	Diverge Volume <u>(in pcph)</u>	Diverge Level of <u>Service</u>	Type of <u>Veave</u>	Weaving Speed (in moh)	Heaving Level of <u>Service</u>	Non-Veaving Non-Veaving Speed Level of <u>(in mph)</u> <u>Service</u>	Won-Weaving Level of <u>Service</u>
EB I-4 off-ramp to 21st Street	4,445				567	609	۲					
EB I-4 on-ramp from 22nd Street	3,878	360	1,965	ш								
EB I-4 off-ramp to 40th Street	4,238				273	1,940	۵					
EB I-4 between 40th Street and Columbus Drive/50th Street	4,455							۲	28.7	u.	42.4	•
EB 1-4 on-ramp from Columbus Drive/50th Street	3,592	396	1,889	۵								
WB I-4 off-ramp to Columbus Drive/50th Street	2,474				191	1,214	U					
WB I-4 between Columbus Drive/ 50th Street and 40th Street	3,170							<	34.8	Ľ	0-74	۵
WB I-4 on-ramp from 40th Street	3,026	623	1,889	۵								
WB I-4 off-ramp to 22nd Street	3,649				152	1,648	U					
WB I-4 on-ramp from 21st Street	3,497	923	991	ß								

11

1 Refers to the freeway volume that occurs before merge or diverge. vph = Vehicles per hour pcph = Passenger cars per hour mph = Miles per hour

weaving sections (560 feet and 740 feet in the eastbound and westbound directions, respectively). The analyses also indicate that in the westbound direction, the lane adjacent to the merge/diverge locations from east of 50th Street to west of 21st Street is operating at unacceptable levels of service. In the eastbound direction, unacceptable levels of service are occurring in the lane adjacent to the merge/diverge areas from west of 21st Street to east of 40th Street.

In the p.m. peak hour, the eastbound on-ramp from 22nd Street operates at LOS E. In addition, the weaving sections between the 40th Street and Columbus Drive/50th Street interchanges operate at LOS F in both the eastbound and westbound directions. As was the case in the a.m. peak hour, the lane adjacent to the merge/diverge areas operates at unacceptable levels of service in the p.m. peak hour. In the eastbound direction, this lane operates at an unacceptable level of service from west of 21st Street to east of Columbus Drive/50th Street. In the westbound direction, this lane operates at an unacceptable level of service from east of 40th Street to west of 21st Street. The volume to capacity ratios of the adjacent lanes are also included in Appendix A.

In addition to the mainline I-4 analyses, signalized intersection analyses were conducted for the I-4 interchange ramp terminals for the a.m. and p.m. peak hours using the methodology described in Chapter 9 - Signalized Intersections, of the HCM. The results of these ramp terminal operations analyses are listed in Table 4. The table indicates that all I-4 ramp terminals are operating at LOS D in both the a.m. and p.m. peak hours. The capacity calculations for the freeway ramp terminals are also included in Appendix A.

•

•

EXISTING I-4 RAMP TERMINAL OPERATIONS ANALYSIS SUMMARY I-4/Crosstown Connector

AM PEAK HOUR

Location	Delay	V/C	Level of
	<u>(in sec/veh)</u>	<u>Ratio</u>	<u>Service</u>
I-4 @ 21st/22nd Street	34.1	0.85	D
I-4 @ 40th Street	38.4	0.84	D
Columbus @ 50th Street	25.8	0.70	D

PM PEAK HOUR

I-4 @ 21st/22nd Street	36.5	0.97	D
I-4 @ 40th Street	32.5	0.75	D
Columbus @ 50th Street	27.5	0.71	D

Traffic Safety

Accident data was obtained from FDOT for a five-year period (1983-1987). Both detailed and summary accident data were reviewed. The accident data for I-4 from east of 14th Street to east of 50th Street (U.S. 41) are summarized in Tables 5 through 9.

The tables provide a listing, by year, of the number of accidents (total accidents as well as fatalities, injuries, and property damage), average daily traffic volumes, actual accident rate, critical accident rate, safety ratio, economic loss and property loss. The safety ratio, the ratio of the actual accident rate to the critical accident rate, is the criteria used to identify safety problems and/or high accident locations. The critical accident rate is the statewide average accident rate for a similar facility. Thus, a safety ratio greater than 1.00 indicates that the facility is experiencing more accidents than would typically be anticipated on this type of facility.

As shown in Tables 5 and 6, the section of I-4 from east of 14th Street to east of 26th Street has experienced safety ratios greater than 1.00. On the section of I-4 between 19th Street and 26th Street (Table 6), the safety ratio has exceeded 1.10 for each of the five years from 1983 to 1987 with a maximum value of 1.581 in 1987. The high safety ratios in this area are primarily due to the large amount of lane changing (weaving) that occurs. In the eastbound direction, a single lane from southbound I-275 merges as a left side lane add with two lanes from eastbound I-275 to form I-4. Approximately 3,800 feet east of this merge, there is a drop lane to 21st Street with the other two lanes continuing eastward. This configuration requires all vehicles from southbound I-275 that exit at 21st Street to change two lanes. In the westbound

: }

-

ACCIDENT SUMMARY I-4 FROM EAST OF 14TH STREET TO EAST OF 19TH STREET I-4/Crosstown Connector

Property <u>Loss</u>				\$2,200	1,275	\$3,475
Economíc <u>Loss</u>	\$160,400	643,300	450,000	579,300	606,200	\$2,439,200
Number of Property Damage Accidents	£3	21	22	33	17	128
Number of <u>Injuries</u>	ω	41	20	14	24	134
Number of Fatalities	0	F	۴	0	-	м
Safety <u>Ratio</u>	0.990	1.210	0.962	1.216	0.871	
Criticalb Accident <u>Rate</u>	2.677	1.731	1.768	1.547	1.582	. •
Actual ^b Accident <u>Rate</u>	2.651	2.095	1.702	1.882	1.378	•
Accidents	51	46	41	45	34	217
ADTa	87,839	100,246	109,947	109, 156	112,627	
Roadway <u>Type</u>	9LD	91D	ęrd	9LD	6LD	
Year	1983	1984	1985	1986	1987	TOTAL

Mile Post Marker 7.65 To 8.25

Source: Data supplied by the Florida Department of Transportation. ^A Average Daily Traffic Volume. ^D Accidents per million vehicle miles.

~)

ACCIDENT SUMMARY I-4 FROM EAST OF 19TH STREET TO EAST OF 26TH STREET I-4/Crosstown Connector

Property <u>Loss</u>	•			\$2,900	3,425	\$6,325
Economic <u>Loss</u>	\$187,600	139,140	271,200	606,174	209,700	\$1,778,640
Number of Property Damage <u>Accidents</u>	38	19	24	22	31	134
Number of <u>Injuries</u>	12	38	24	33	59	136
Number of Fatalities	0	0	0	0	~	۴
Safety <u>Ratio</u>	1.103	1.342	1.195	1.269	1.581	
Critical ^b Accident <u>Rate</u>	2.766	1.792	1.869	1.620	1.684	
Actual ^b Accident <u>Rate</u>	3.052	2.405	2.235	2.056	2.664	
Accidents	49	44	40	39	48	220
ADTa	87,960	100,246	98,047	104,042	106,126	
Roadway <u>Iype</u>	6LD/4LD	6LD/4LD	6LD/4LD	910/41D	6LD/4LD	·
Year	1983	1984	1985	1986	1987	TOTAL

Mile Post Marker 8.25 To 8.75

Source: Data supplied by the Florida Department of Transportation. ^A Average Daily Traffic Volume. ^D Accidents per million vehicle miles.

1

.

•

ACCIDENT SUMMARY I-4 FROM EAST OF 26TH STREET TO EAST OF 34TH STREET I-4/Crosstown Connector

	Property <u>Loss</u>	\$109,190	•	•	800	550	\$110,540
	Economic <u>Loss</u>	\$189,500	182,100	410,100	82,200	211,200	\$1,075,100
Number of Property	Damage <u>Accidents</u>	33	12	16	1	13	2
	Number of <u>Injuries</u>	15	17	17	4	14	67
	Number of <u>Fatalities</u>	o	0	~	o	٥	-
	Safety <u>Ratio</u>	0.563	0.550	0.797	0-370	0.531	·
Criticalb	Accident <u>Rate</u>	2.577	1.655	1.789	1.515	1.545	•
Actualb	Accident <u>Rate</u>	1.451	0.911	1.426	0.562	0.821	
	Accidents	33	55	32	15	23	130
	ADTa	88,067	100,246	81,948	97,424	102,225	
	Roadway <u>Type</u>	4LD	4LD	4LD	4LD	4 L D	
	Year	1983	1984	1985	1986	1987	TOTAL

Mile Post Marker 8.75 To 9.50

Source: Data supplied by the Florida Department of Transportation. ^A Average Daily Traffic Volume. ^D Accidents per million vehicle miles.

-

•

 $\overline{\cdot}$ -]

; } Ì

1.13

. 1.....

ACCIDENT SUMMARY I-4 FROM EAST OF 34TH STREET TO EAST OF 40TH STREET I-4/Crosstown Connector

Property <u>Loss</u>	•	•	•	\$ 400	1,125	\$1,525
Economic <u>Loss</u>	\$135,700	315,100	53,900	137,700	168,000	\$810,400
Number of Property Damage Accidents	26	15	13	ø	15	78
Number of <u>Injuries</u>	6	~	m	ø	10	38
Number of Fatalities	0	•	٥	0	o	-
Safety <u>Ratio</u>	0.776	0.725	0.579	0.538	0.799	
Critícal ^b Accident <u>Rate</u>	2.789	1.853	1.968	1.664	1.689	•
Actual ^b Accident <u>Rate</u>	2.165	1.344	1.141	0.896	1.350	
Accidents	33	21	16	15	54	109
<u>ADT</u> ⁸	83,512	85,554	76,780	91,702	67,343	,
Roadway <u>Type</u>	4LD	4LD	4LD	41D	4FD	· •
Year	1983	1984	1985	1986	1987	TOTAL

Mile Post Marker 9.50 To 10.00

Source: Data supplied by the Florida Department of Transportation. ^A Average Daily Traffic Volume. ^b Accidents per million vehicle miles.

•

.-

.

- -----

Î

•

,

ACCIDENT SUMMARY I-4 FROM EAST OF 40TH STREET TO EAST OF 50TH STREET I-4/Crosstown Connector

Property <u>Loss</u>	1	•		\$ 4,100	3,690	\$7,790
Economic <u>Loss</u>	\$133,100	260,500	242,600	205,500	219,900	\$1,061,600
Number of Property Damage <u>Accidents</u>	34	14	19	2	20	64
Number of <u>Injuries</u>	2	55	22	15	13	82
Number of Fatalities	0	0	0	0	0	o
Safety <u>Ratio</u>	0.832	0.992	0.982	0.536	0.720	•
Criticalb Accident <u>Rate</u>	2.702	1.793	1.831	1.563	1.597	
Actual ^b Accident <u>Rate</u>	2.249	1.780	1.799	0.838	1.151	•
Accidents	41	33	36	19	27	156
ADTa	62,405	63,482	68,518	77,565	80,320	
Roadway <u>Iype</u>	4LD	4 LD	4LD	4LD	4FD	
Year	1983	1984	1985	1986	1987	TOTAL.

•

Mile Post Marker 10.00 To 10.80

Source: Data supplied by the Florida Department of Transportation. ⁸ Average Daily Traffic Volume. ^b Accidents per million vehicle miles. •

- -

direction, a single lane on-ramp from 21st Street merges with two through lanes on I-4 as a lane add. These three lanes then split into southbound I-275 (two lanes) and northbound I-275 (one lane). All vehicles destined for southbound I-275 that enter at 21st Street must weave with all vehicles on I-4 east of 21st that are destined for northbound I-275. The sections of I-4 from east of 26th Street to east of 40th Street (Tables 7 and 8) have safety ratios less than 1.00, ranging from a low of 0.370 to a high of 0.799. The section from east of 40th Street to east of 50th Street (U.S. 41) has experienced safety ratios approaching 1.00 in three of the five years (Table 9).

TRAFFIC PROJECTIONS

The TIS Master Plan concept includes a four-roadway system on I-4 in the vicinity of the proposed project. The four-roadway system consists of an eight-lane express freeway system with two High Occupancy Vehicle (HOV) lanes in the center of the roadway and a two- to three-lane local access freeway system on the outside of the express lanes. This four-roadway system is to be implemented in two phases. Phase I of the Master Plan concept includes the I-4 local access freeway system and the Crosstown Connector interchange, while Phase II includes the I-4 express freeway system and the HOV lanes, additional direct connections to/from the Crosstown Connector interchange and slip ramps to/from the local access freeway system.

To assess the impact of the proposed project, both 1995 (opening year) and 2010 (design year) traffic projections were estimated. These projections were estimated using the Florida Standard Urban Transportation Model Structure (FSUTMS) for

Hillsborough County, as supplied by FDOT and refined as part of TIS. Computer simulations were run for four alternatives:

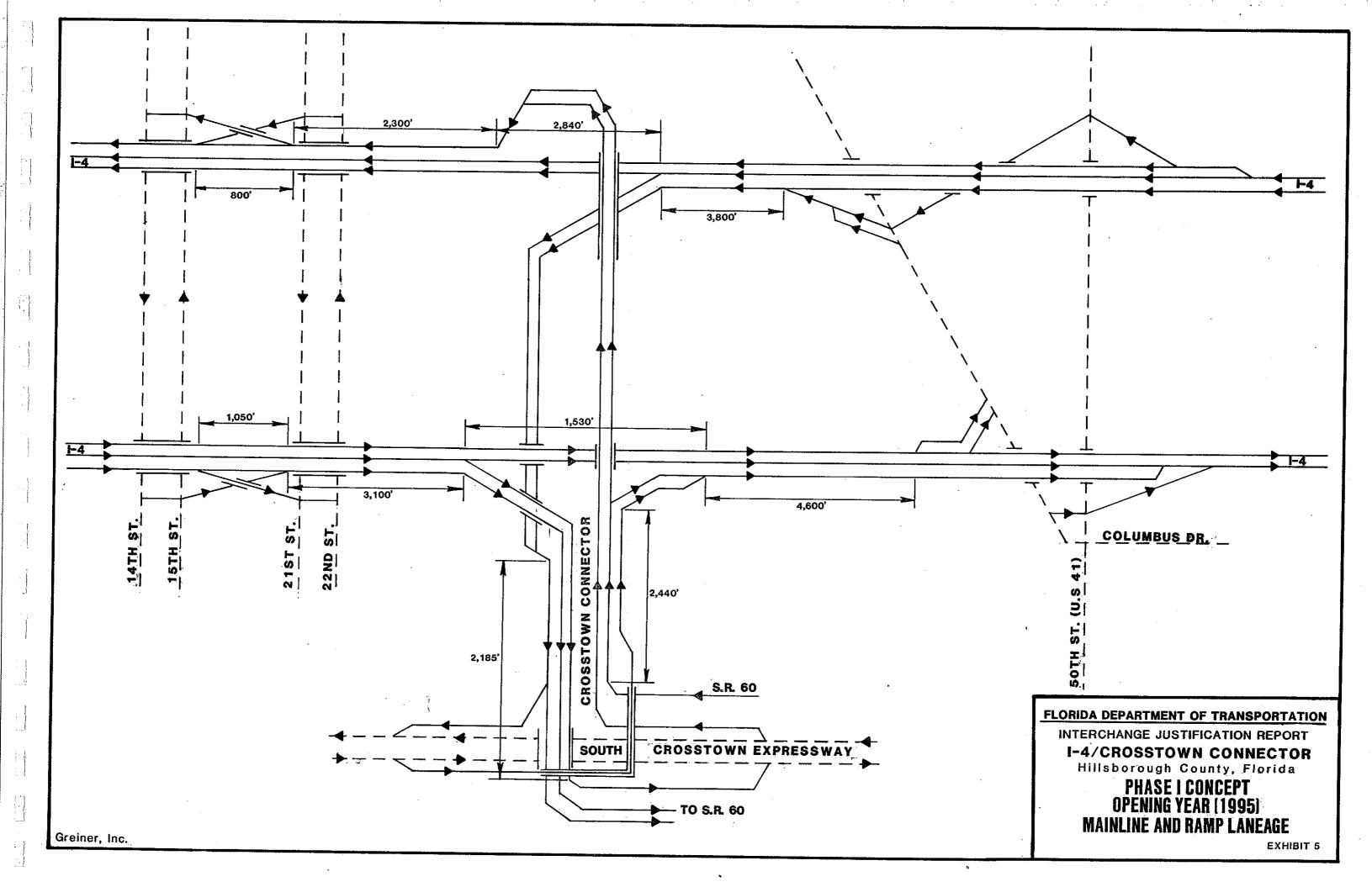
- Alternative A Opening Year (1995)
- * Alternative B No-Build (1995)
- * Alternative C Design Year (2010)
- * Alternative D No-Build (2010)

The Crosstown Connector interchange is included in both Alternatives A and C and the existing 40th Street interchange is eliminated. Alternative A includes "braided" ramps at 15th Street (to and from the east) and 21st Street (to and from the west) while Alternative C includes a split-diamond interchange at 14th Street (to and from the west) and 15th Street (to and from the east). The existing 21st/22nd Street interchange is replaced by the 14th/15th Street interchange in Alternative C. Alternative B (the 1995 No-Build Alternative) contains the existing laneage and interchange locations/configurations. Alternative D does not include the Crosstown Connector interchange but does include the split-diamond interchange at 14th/15th Streets and a modified 40th Street interchange. Alternatives A, C, and D all include a reconfigured 50th Street/Columbus Drive split-diamond interchange.

TRAFFIC OPERATIONS ANALYSES

Evaluation of opening year (1995) and design year (2010) operating conditions were based on directional design hour traffic volumes (DDHV's). The 1995 and 2010 ADT's were converted to DDHV's using a "K" factor of 8 percent and a "D" factor of 55 percent. These K and D factors are the same factors used in TIS. The analyses were conducted based upon the following assumptions:

Peak Hour Factor (PHF)= 0.95Design Hour Truck Percentage= 3%Design Hour Buses/RV Percentage= 0%Population Factor= 1.0Terrain= LevelDesign Speed= 60 mph Express Freeway Lanes
50 mph Local Access Freeway Lanes

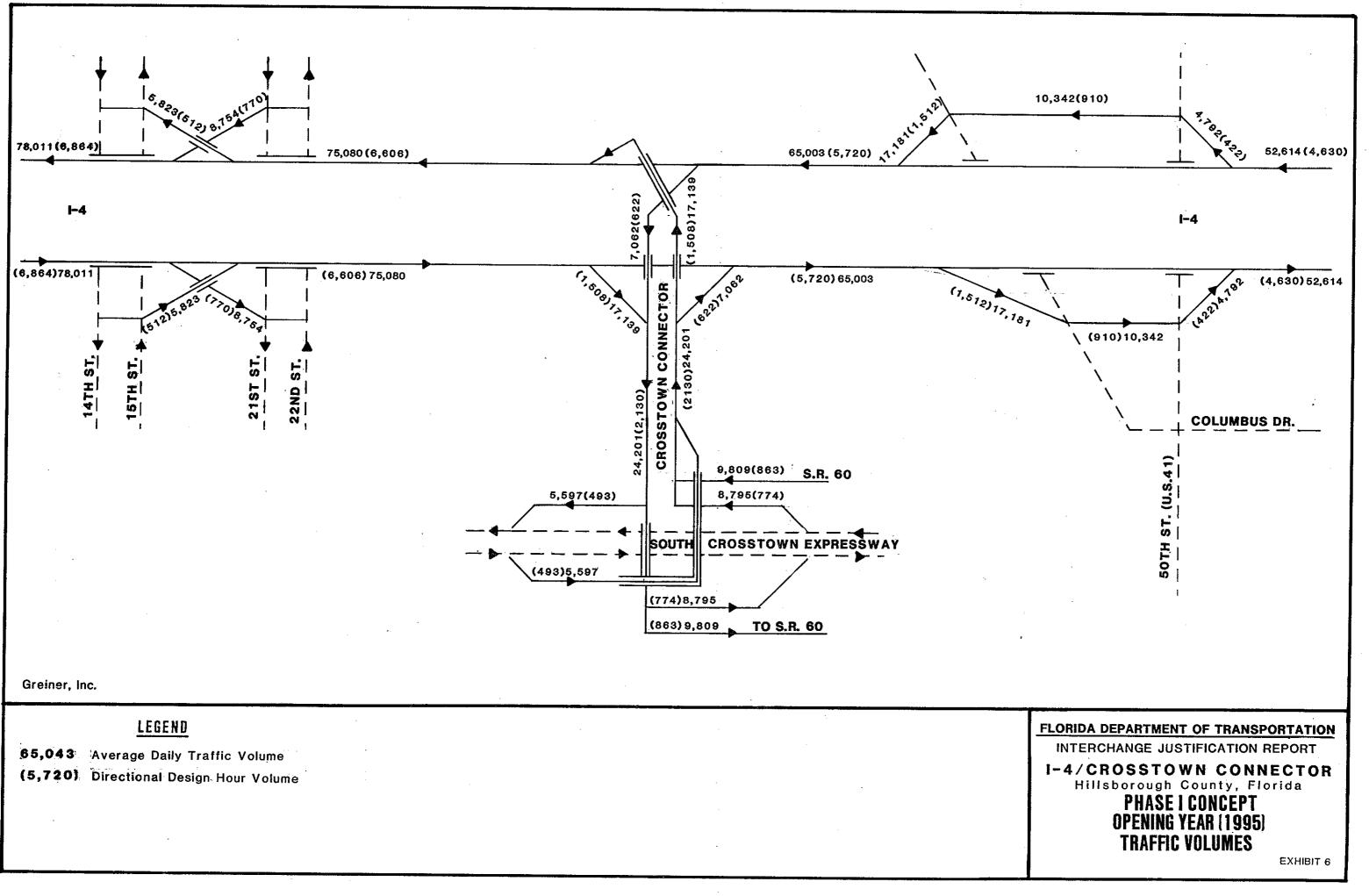

The following sections discuss the opening year, design year and No-Build alternatives and the corresponding operations analyses.

Opening Year (1995) Traffic Operations

Phase I Analysis

A schematic illustrating the opening year Phase I concept is provided on Exhibit 5. The Phase I improvement was developed as the initial phase of construction of the ultimate improvement. The Phase I concept reflects construction of the local access freeway lanes in the ultimate concept with the exception of the temporary ramps to and from the west at 21st Street. These temporary ramps are provided to maintain access to Ybor City and the eastern CBD. The permanent access will be provided at 14th Street.

The provision of access to/from I-4 at 14th/15th Streets (as opposed to the current access at 21st/22nd Streets) is required for the ultimate (Phase II) improvement due to the location of the Crosstown Connector. Traffic operations analyses conducted during the early stages of TIS indicated that the distances between the Crosstown Connector ramps to/from the west and the ramps to/from the east at 22nd Street were insufficient to provide acceptable levels of service on the I-4 local access freeway lanes.



The construction of the ramps to and from the west at 14th Street are to be constructed as part of the ultimate (Phase II) improvement since they require substantial modifications to the I-4/I-275 interchange due to distances required between ramp gores.

The construction of temporary ramps to and from the west at 14th Street that tie to existing I-4 in Phase I was analyzed to determine the traffic operations impacts. The construction of temporary ramps at 14th Street would create weaving areas between these ramps and the I-4/I-275 junction. The eastbound and westbound weaving area lengths would be approximately 835 feet and 1,065 feet, respectively. The results of the traffic operations analyses indicated that the eastbound and westbound weaving areas were projected to operate at LOS F. In the eastbound weaving area, the speeds of the weaving and non-weaving vehicles were estimated to be 24.3 miles/hour and 21.4 miles/hour, respectively. In the westbound weaving area, the weaving and nonweaving vehicle speeds were projected to be 32.8 miles/hour and 26.9 miles/hour. It should also be noted that the 1995 volumes projected on I-4 between the I-275/I-4 and 14th/15th Street interchanges exceed the available capacity even if the weaving areas are not present. The capacity calculations for these weaving areas are included in Appendix B.

Based on these results, the permanent ramps to and from the east at 15th Street and temporary ramps to and from the west at 21st Street are provided in Phase I. A local circulation plan for the Ybor City/eastern CBD area (between 14th Street and 22nd Street) will be developed during the preliminary engineering design phase of this proposed project.

The opening year ADT and DDHV's are presented on Exhibit 6. The opening year Phase I analyses included evaluations of ramp junctions and weaving areas on I-4 and

the Crosstown Connector. The analyses were conducted using the procedures contained in the HCM.

Table 10 summarizes the traffic operations analyses conducted on I-4 and the Crosstown Connector for opening year (1995). As indicated in Table 10, five of the 12 locations analyzed on I-4 will not operate at an acceptable level of service (LOS D) in the opening year with the proposed geometry. These locations are as follows:

- Eastbound I-4 off-ramp to 21st Street (LOS F).
- * Eastbound I-4 weaving section between the Crosstown Connector on-ramp and the Columbus Drive off-ramp (LOS F).
- * Eastbound I-4 on-ramp from 50th Street (LOS E).
- * Westbound I-4 weaving section between the Columbus Drive on-ramp and the Crosstown Connector off-ramp (LOS E).
- * Westbound I-4 on-ramp from 21st Street (LOS F).

Table 10 also indicates that the Crosstown Connector will operate at LOS B in the opening year. The capacity calculations for the ramp junctions and weaving areas are included in Appendix B.

No-Build Analysis

As was stated earlier, the No-Build Alternative assumed the existing geometry and interchange locations/configurations to be present in 1995. The 1995 No-Build Alternative ADT and DDHV's are illustrated on Exhibit 7. Table 11 summarizes the traffic operations analyses conducted on I-4 for the No-Build Alternative. As indicated in Table 11, only two of the 10 locations analyzed are projected to provide an acceptable level of service. These two locations are the eastbound I-4 off-ramp to

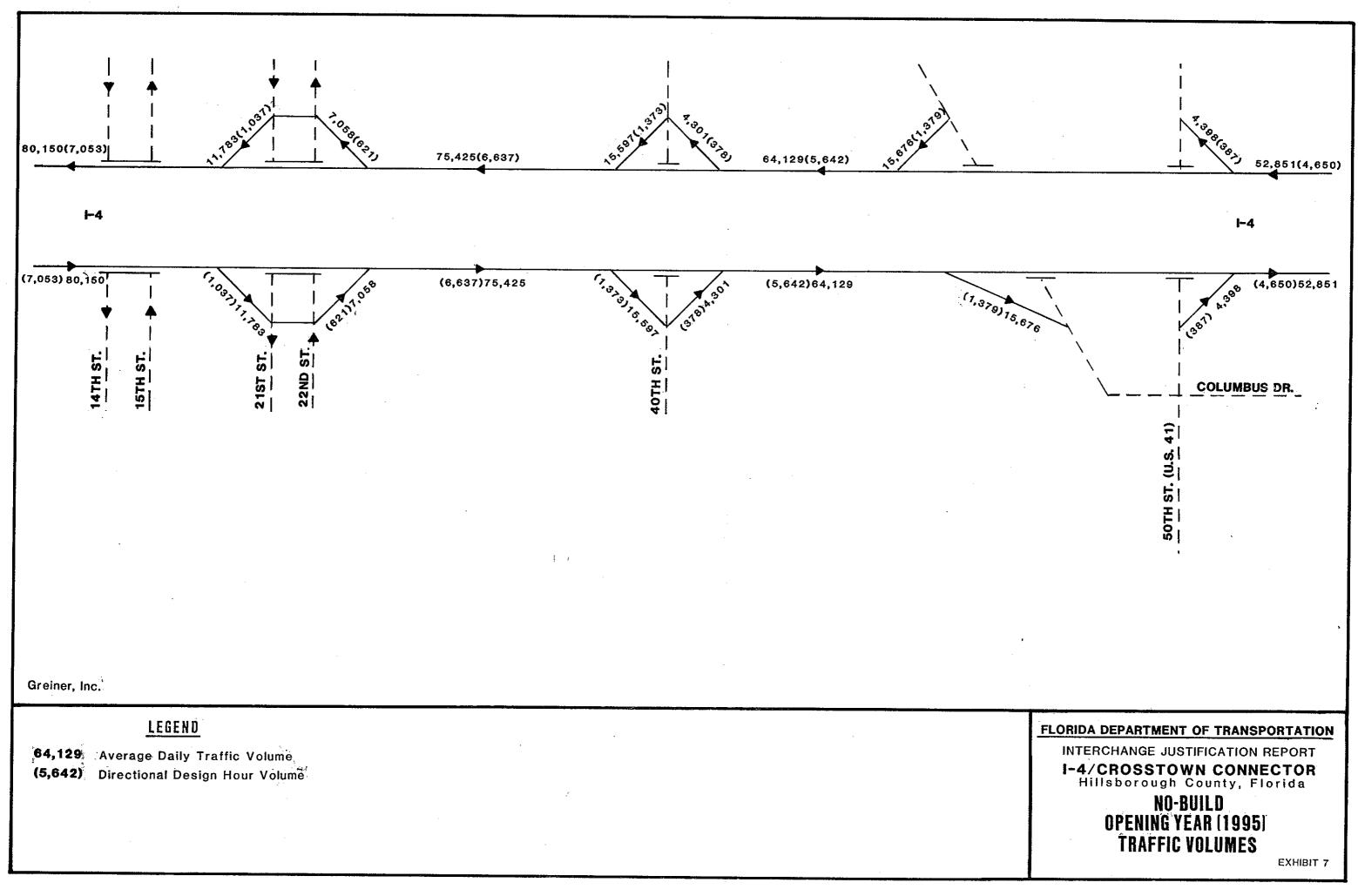
.

•

.

.

1


٠.

OPENING YEAR (1995) I-4/CROSSTOWN CONNECTOR Freeway Operations Analysis summary - Phase I I-4/Crosstown Connector

			Merge Area			Dīverge Area				Weaving Area	a Area	
<u>Location</u>	Freeway Volume (in vph) ¹	Ramp Volume <u>(in vph)</u>	Merge Volume <u>(in pcph)</u>	Merge Level of <u>Service</u>	Ramp Volume <u>(in vph)</u>	Diverge Volume (in poph)	Diverge Level of <u>Service</u>	Type of <u>Veave</u>	Weaving Speed (in moh)	Weaving Level of Service	Non-Weaving Speed (in mph)	Non-Weaving Level of Service
EB I-4 Off-ramp to 21st Street	6,864				022	2,274	Ľ					
EB 1-4 between 15th Street and Crosstown Connector	6,606							ø	40-3	U	40.0	۵
EB 1-4 between Crosstown Connector and Columbus Drive	5,720							U	33.7	ш	29.4	it.
EB 1-4 on-ramp from 50th Street	4,208	422	2,148	ш								
WB I-4 off-ramp to 50th Street	4,630				422	1,495	IJ					
WB I-4 between Columbus Drive and Crosstown Connector	5,720							ы	37.9	۵	33.2	ш
WB I-4 between Crosstown Connector and 15th Street	6,606							œ	38.5	۵	36.4	۵
WB I-4 on ramp from 21st Street	6,094	0//	2,374	Ŀ								
SB Crosstown Connector on-ramp from WB I-4	1,508	622	668	B								
SB Crosstown Connector off-ramp to WB Crosstown Expressway	2, 130				667	896	ш					
SB Crosstown Connector off-ramp to EB Crosstown Expressway	1,637				774	831	m					
NB Crosstown Connector diverge to EB and WB I-4	2,130				622	502/824	A/B					

 $^{^{1}}$ Refers to the freeway volume that occurs before merge or diverge.

I

. • *

• ъ.)

{

с. 1

ĺ

NO BUILD (1995) 1-4 FREEMAY OPERATIONS ANALYSIS SUMMARY 1-4/Crosstown Connector

		Ĭ		Merge Area		- 1	Diverge Area				Weaving Area	l Area	
	<u>Location</u>	Freeway Volume (in Vph) ¹	Ramp Volume (in vph)	Merge Volume <u>(in pcph)</u>	Merge Level of <u>Service</u>	Ramp Volume <u>(in vph)</u>	Diverge Volume <u>(in pcph)</u>	Diverge Level of <u>Service</u>	Type of <u>Heave</u>	Weaving Speed (in mph)	Weaving Level of Service	Non-Weaving Speed (in moh)	Non-Weaving Level of <u>Service</u>
	EB 1-4 off-ramp to 21st Street	7,053				1,037	1,114	æ					
	EB 1-4 on-ramp from 22nd Street	6,016	621	3,026	Ľ								
	EB 1-4 off-ramp to 40th Street	6,637				1,373	3,453	щ					
26	EB 1-4 between 40th Street and 50th Street/Columbus Drive	5,642							4	26.3	ц.	39.3	ш
	EB 1-4 on-ramp from 50th Street	4,263	387	2,136	W								
	WB I-4 off-ramp to 50th Street	4,650				387	2, 156	ш					
	WB 1-4 between 50th Street/ Columbus Drive and 40th Street	5,642							4	28.7	ш	41.4	ш
	WB 1-4 on-ramp from 40th Street	5,264	1,373	3,457	ш								
	WB I-4 off-ramp to 22nd Street	6,637				621	3,043	LL.					
	WB 1-4 on-ramp from 21st Street	6,016	1,037	1,114	ы								

•

 1 Refers to the freekay volume that occurs before merge or diverge.

21st Street (a drop lane) and the westbound I-4 on-ramp from 21st Street (an add lane). The eastbound I-4 off-ramp to 21st Street is projected to operate at LOS B and the westbound I-4 on-ramp from 21st Street is projected to operate at LOS C in 1995. Of the eight locations that will operate at an unacceptable level of service, six of these are projected to operate at LOS F and the other two are anticipated to operate at LOS E. The capacity calculations for the ramp junctions and weaving areas are included in Appendix C.

It should be noted that although the actual eastbound diverge and westbound merge locations at 21st Street are projected to operate at LOS B and LOS C, respectively; the freeway segments immediately upstream and downstream of these locations are projected to operate at Level of Service F. The design hour volume on the two eastbound and westbound lanes east of the 21st Street on-/off-ramps is projected to be 6,016 vehicles per hour. This results in a per lane volume of 3,231 passenger cars per hour which exceeds the capacity (LOS E) by over 46 percent. The design hour volume on the three eastbound and westbound lanes west of the 21st Street on-/off-ramps is projected to be 7,053 vehicles per hour. This results in a per lane volume of 2,525 passenger cars per hour which exceeds the capacity by over 14 percent.

Given the large disparity between the add lane/drop lane volumes on the 21st Street ramps and the per lane volumes on mainline I-4 east and west of the add lane/drop lane, it is anticipated that a significant amount of lane changing will occur downstream of the on-ramp and upstream of the off-ramp. This lane changing is the result of drivers on mainline I-4 trying to improve their level of service by equalizing the lane volumes on the section of I-4 west of the 21st Street ramps. This driver behavior has been observed with the existing conditions and would be expected to

increase with the 1995 No-Build Alternative due to the projected increase in volume. This lane changing and disparity in lane volumes will result in increased turbulence, poorer operating conditions, and an increased potential for accidents.

A comparison of Tables 10 and 11 indicates that in 1995 unacceptable levels of service will exist at certain locations on I-4 with either the Phase I Alternative or the No-Build Alternative. However, the number of locations that will operate at LOS E or F with the Phase I Alternative (five) is less than with the No-Build Alternative (eight). In addition to the locations projected to operate at unacceptable levels of service, the per lane volumes exceed the available capacity for the adjacent freeway lanes within the study area (from west of 15th Street to 50th Street).

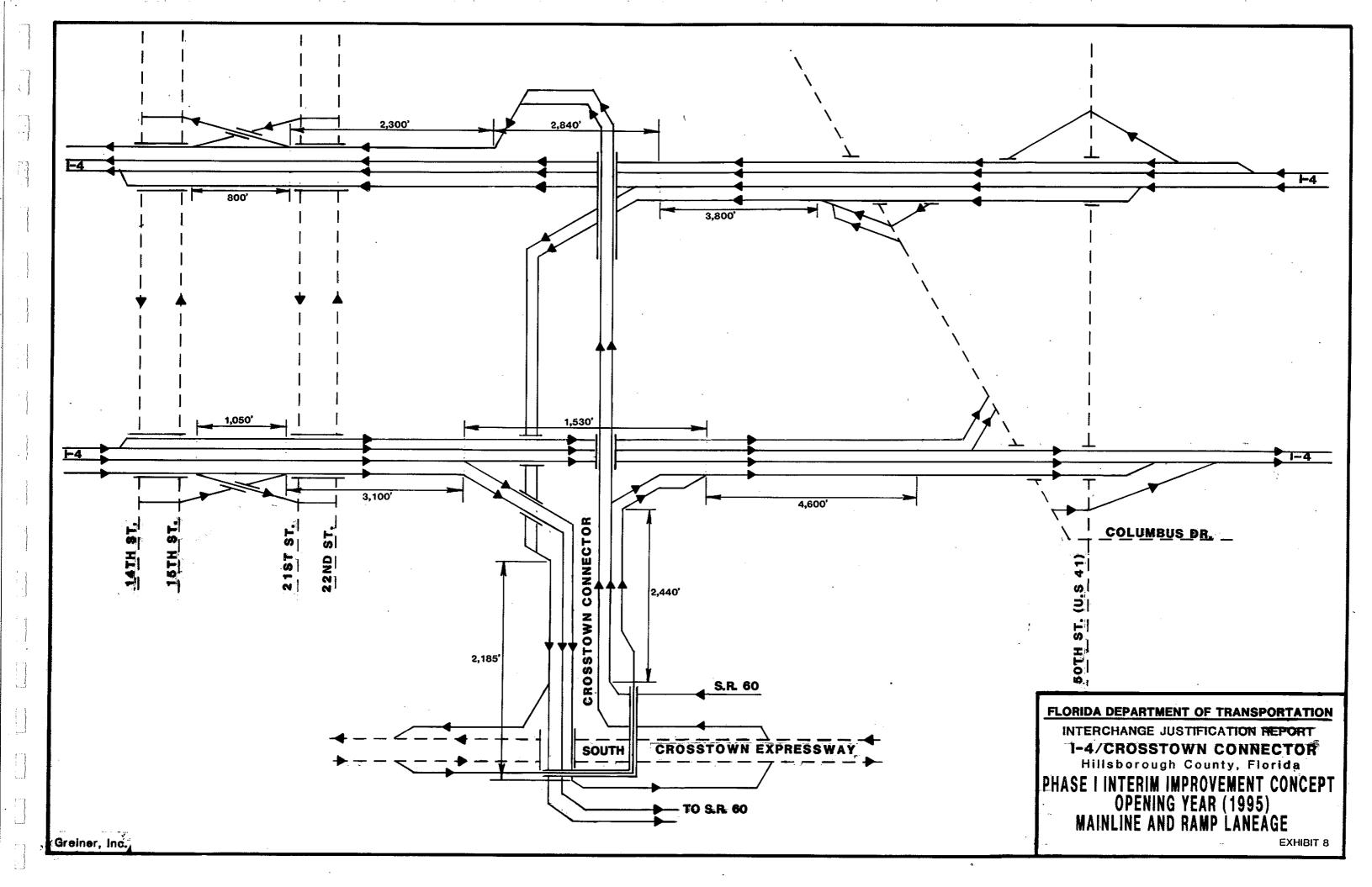
Exhibit 7 indicates that approximately 160,300 vehicles per day (vpd) are projected for I-4 east of the I-4/I-275 interchange in the year 1995 for the No-Build Alternative. Exhibit 6 identifies approximately 156,000 vpd projected for the year 1995 with the Crosstown Connector. These projections indicate that traffic is expected to shift from I-4/I-275 to the South Crosstown Expressway after construction of the Connector. It is anticipated that the distribution of traffic through the downtown interchange will not change due to the construction of the Connector, therefore, it is expected that each leg of the interchange will experience a decrease in traffic volumes. As a result, traffic operations for the I-4/I-275 interchange are not anticipated to degrade with the implementation of the Crosstown Connector compared to the No-Build Alternative.

Phase I Interim Improvement Analysis

Based on the results of the operations analyses conducted for the opening year (1995) Phase I concept, two interim improvement concepts were developed to improve traffic

operations on I-4. The first interim improvement concept (Option 1) was developed based on improving the traffic operations without increasing the pavement width beyond the width needed for the ultimate (Phase II) improvement. This concept would involve restriping the I-4 local access freeway lanes to provide one additional travel lane in each direction. This would result in a six-foot outside shoulder and a two-foot inside shoulder (as opposed to two, ten-foot shoulders). Upon completion of the express freeway system during Phase II, the local access freeway lanes would be restriped to provide the number of through lanes required in the ultimate improvement and ten-foot inside and outside shoulders.

The second interim improvement concept (Option 2) was developed based on improving traffic operations on I-4 and providing inside and outside shoulder widths that meet current design standards. With this concept, one additional travel lane in each direction would be constructed along with a ten-foot outside shoulder and a fourfoot inside shoulder. The provision of these shoulder widths requires "overbuilding" the Phase II (Ultimate) local access freeway by a total of 12 feet, or six feet in each direction. Upon completion of the express freeway system in Phase II, the local access freeway would be restriped resulting in 13-foot inside and outside shoulders.


The overbuilding of the local freeway with Option 2 requires an additional 12 feet of full strength pavement with six feet less of shoulders for the roadway sections and appropriate bridge widening when compared with the cross section required for the ultimate concept. The additional cost associated with this concept was estimated to be \$1,940,400.00 in 1990 dollars, which represents less than one percent of the total project cost.

Several discussions were held with the FHWA and the FDOT concerning the Phase I interim improvement concept. Based on the relatively minimal additional cost associated with overbuilding the local freeway and the desire to provide standard shoulder widths, Option 2 was selected as the Phase I interim improvement concept.

Exhibit 8 illustrates the laneage provided with the Phase I interim improvement concept. As indicated on Exhibit 8, the eastbound lane will be added west of the 21st Street off-ramp and dropped at the Columbus Drive off-ramp. The additional westbound lane will begin west of the 50th Street off-ramp and merge west of the 21st Street on-ramp. A concept plan on 100 scale aerial photography is included in the appended plan set.

Table 12 summarizes the traffic operations analyses conducted on I-4 and the Crosstown Connector for the Phase I interim improvement concept. As shown in the table, only two of the 12 locations analyzed are projected to operate at an unacceptable level of service. The eastbound I-4 weaving section between the Crosstown Connector on-ramp and the Columbus Drive off-ramp and the westbound I-4 on-ramp from 21st Street are both projected to operate at LOS E in 1995. Of the six locations on I-4 that operate at an acceptable level of service, four operate at LOS C while the other two operate at LOS D. All four locations on the Crosstown Connector are projected to operate at LOS B or better. The capacity calculations for the ramp junctions and weaving areas are included in Appendix D.

A comparison of the traffic operations projected for the eastbound weaving area between 40th Street and 50th Street in the No-Build Alternative with those projected for the eastbound weaving area between the Crosstown Connector and Columbus Drive

-

. } .]

х 2

.....

· •

- -----

:

......

OPENING YEAR (1995) I-4/CROSSTOWN CONNECTOR Freeway Operations Analysis Summary - Phase I Interim Improvement I-4/Crosstown Connector

	1		<u>Merge Area</u>			Diverge Area				Veaving Area	a Åree	
<u>Location</u>	Freeway Volume <u>(in vph)</u> 1	Ramp Volume (in vph)	Merge Volume <u>(in pcph)</u>	Merge Level of <u>Service</u>	Ramp Volume (in vph)	Diverge Volume (in pcph)	Diverge Level of Service	Type of Leave	Weaving Speed (in mob)	Weaving Level of Service	Heaving Non-Veaving Non-Veaving Level of Speed Level of Service (in much) Service	Non-Weaving Level of
EB 1-4 Off-ramp to 21st Street	6,864				170	1,556	ں					201 4 100
EB 1-4 between 15th Street and Crosstown Connector	6,606							8	42.8	U	44.5	U
EB I-4 between Crosstown Connector and Columbus Drive	5,720							ы	36.1	۵	32.4	ш
EB 1-4 on-ramp from 50th Street	4,208	422	1,457	U								
WB I-4 off-ramp to 50th Street	4,630				422	1,495	U					
WB I-4 between Columbus Drive and 5,720 Crosstown Connector	4 5,720							U	40.5	IJ	36.6	٩
WB 1-4 between Crosstown Connector and 15th Street	6,606							Ωů.	41.0	U	41.0	۵
WB I-4 on-ramp from 21st Street	6,094	0//	1,968	ш								

31

 $^{\mathfrak{l}}$ Refers to the freeway volume that occurs before merge or diverge.

in the Phase I Interim Improvement, indicates that the Phase I Interim Improvement Concept is expected to provide overall improved traffic operations for this section of I-4.

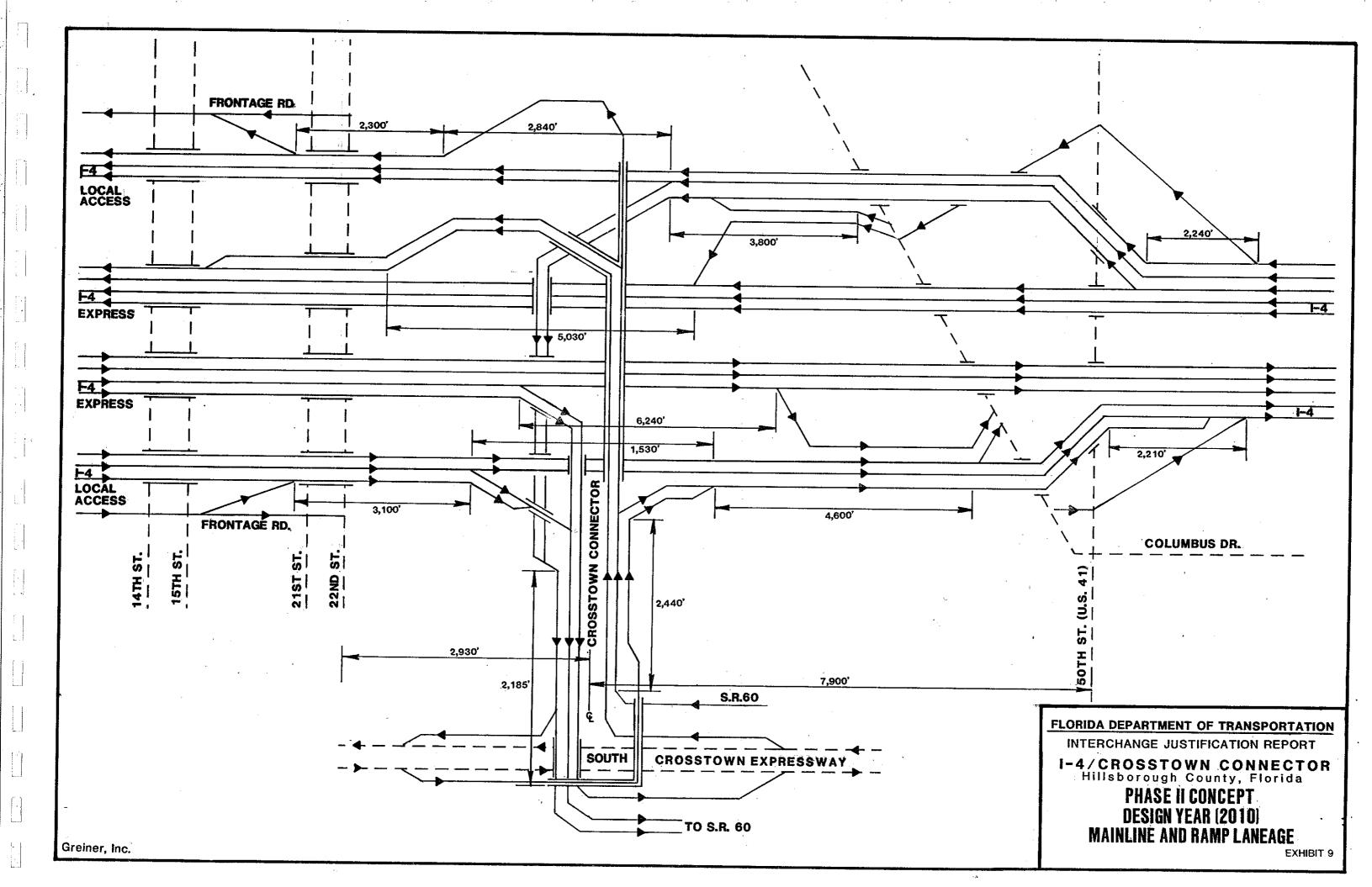
As indicated in Table 11, a weaving vehicle speed of 26.3 mph and a non-weaving vehicle speed of 39.3 mph is projected for the eastbound I-4 weaving area between 40th Street and 50th Street in the No-Build Alternative. Table 12 indicates that with the Phase I Interim Improvement, the weaving and non-weaving vehicle speeds for the eastbound I-4 weaving area between the Crosstown Connector and Columbus Drive are projected to be 36.4 mph and 32.4 mph, respectively. Therefore, the 13 mph travel speed differential anticipated to occur in the No-Build Alternative could be reduced to 4 mph with the implementation of the Phase I Interim Improvement. In general, the larger the disparity between vehicle operating speeds, the greater the potential for increased accidents. As a result, fewer accidents (and hence an improvement in safety) would be anticipated to occur on this section of I-4 with the Phase I Interim Improvement than with the No-Build Alternative. A comparison of Tables 11 and 12 also indicates that the projected level of service for the weaving vehicles is better with the Phase I Interim Improvement (LOS E) than with the No-Build Alternative (LOS F); while the level of service for the non-weaving vehicles remains the same (LOS E).

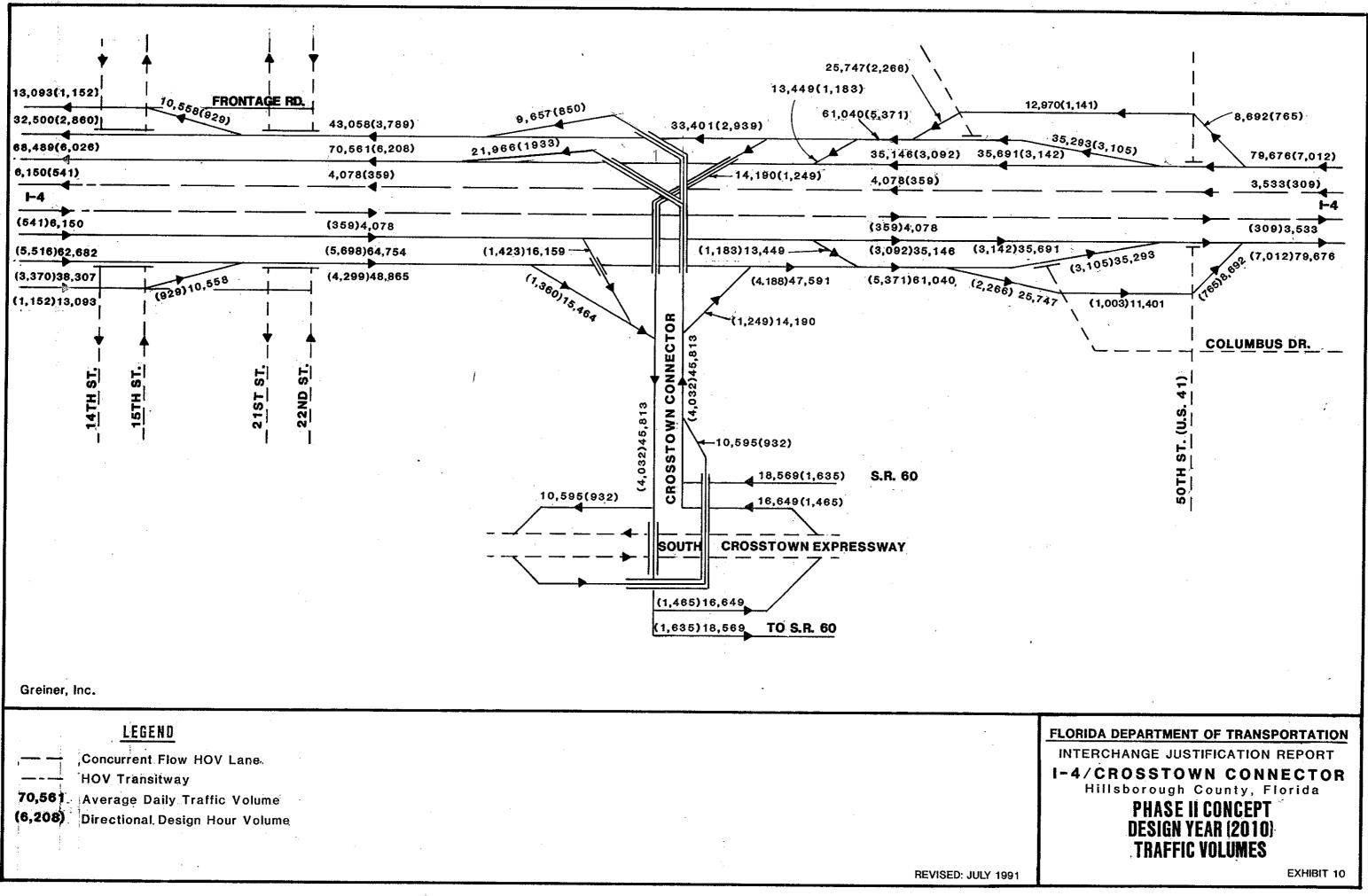
It should also be noted that the distance between the Crosstown Connector on-ramp and the Columbus Drive off-ramp (4,600 feet) greatly exceeds the maximum distance that the 1985 <u>Highway Capacity Manual</u> weaving area methodology was developed to analyze. Therefore, it is quite likely that the level of service in this area will be better than that estimated with the weaving analysis. The 5,720 vehicles per hour projected for the four eastbound I-4 lanes between the Crosstown Connector and

Columbus Drive results in a per lane flow rate of 1,536 passenger cars per hour. Based on a basic freeway segment analysis, this section of I-4 would be anticipated to operate at Level of Service C.

Although the westbound I-4 on-ramp from 21st Street is projected to operate at a lower level of service with the Phase I Interim Improvement concept (LOS E) than with the No-Build Alternative (LOS C), the Phase I Interim Improvement concept is anticipated to result in an improved level of service upstream of the merge area. The design hour volume on the four westbound lanes east of the 21st Street on-ramp is projected to be 6,094 vehicles per hour, which results in a per lane volume of 1,636 passenger cars per hour (LOS D). As stated earlier, with the No-Build Alternative, the per lane volume on the section of I-4 east of the 21st Street on-ramp is projected to be 3,231 passenger cars per hour (LOS F).

A comparison of Tables 10 and 12 indicates that the Phase I interim improvement concept results in improved traffic operations. The level of service at six of the eight locations analyzed on I-4 improved a minimum of one level with the Phase I interim improvement. No location will operate at LOS F and only two locations will operate at LOS E with the Phase I interim improvement concept. With the Phase I Concept three locations will operate at LOS F and two locations will operate at LOS E. It should also be noted that the per lane volumes on the freeway lanes do <u>not</u> exceed the available capacity. A comparison of Tables 11 and 12 indicates that the westbound I-4 off-ramp and the eastbound I-4 on-ramp to/from 50th Street are projected to operate at Level of Service E for the No-Build Alternative and Level of Service C for the Phase I interim improvement concept.


The improved traffic operations could be achieved with minor additional construction on the local access freeway lanes beyond that required for the ultimate concept. The local access freeway would be restriped upon completion of the express freeway system in the Phase II (Ultimate) concept resulting in 13-foot shoulders.


Design Year (2010) Traffic Operations

Phase II Analysis

The TIS Master Plan concept includes a four-roadway system on I-4 in the vicinity of the proposed project. The four-roadway system consists of an eight-lane express freeway system with two High Occupancy Vehicle (HOV) lanes and a two- to threelane local access freeway system. The local access freeway lanes interchange with 14th/15th Streets, the Crosstown Connector, and Columbus Drive (to and from the west). The express freeway lanes interchange with the Crosstown Connector (to and from the west) and 50th Street (to and from the east). A schematic illustration of the ultimate concept is shown on Exhibit 9. A concept plan on 100 scale aerial photography is appended by reference.

The design year (2010) ADT's and DDHV's are provided on Exhibit 10 while the peak hour turning movements are provided on Exhibit 11. The design year analyses included evaluations of ramp junctions and weaving areas on I-4 and the Crosstown Connector and signalized intersection capacity analyses at the I-4 ramp terminals.

; .

ъ. I

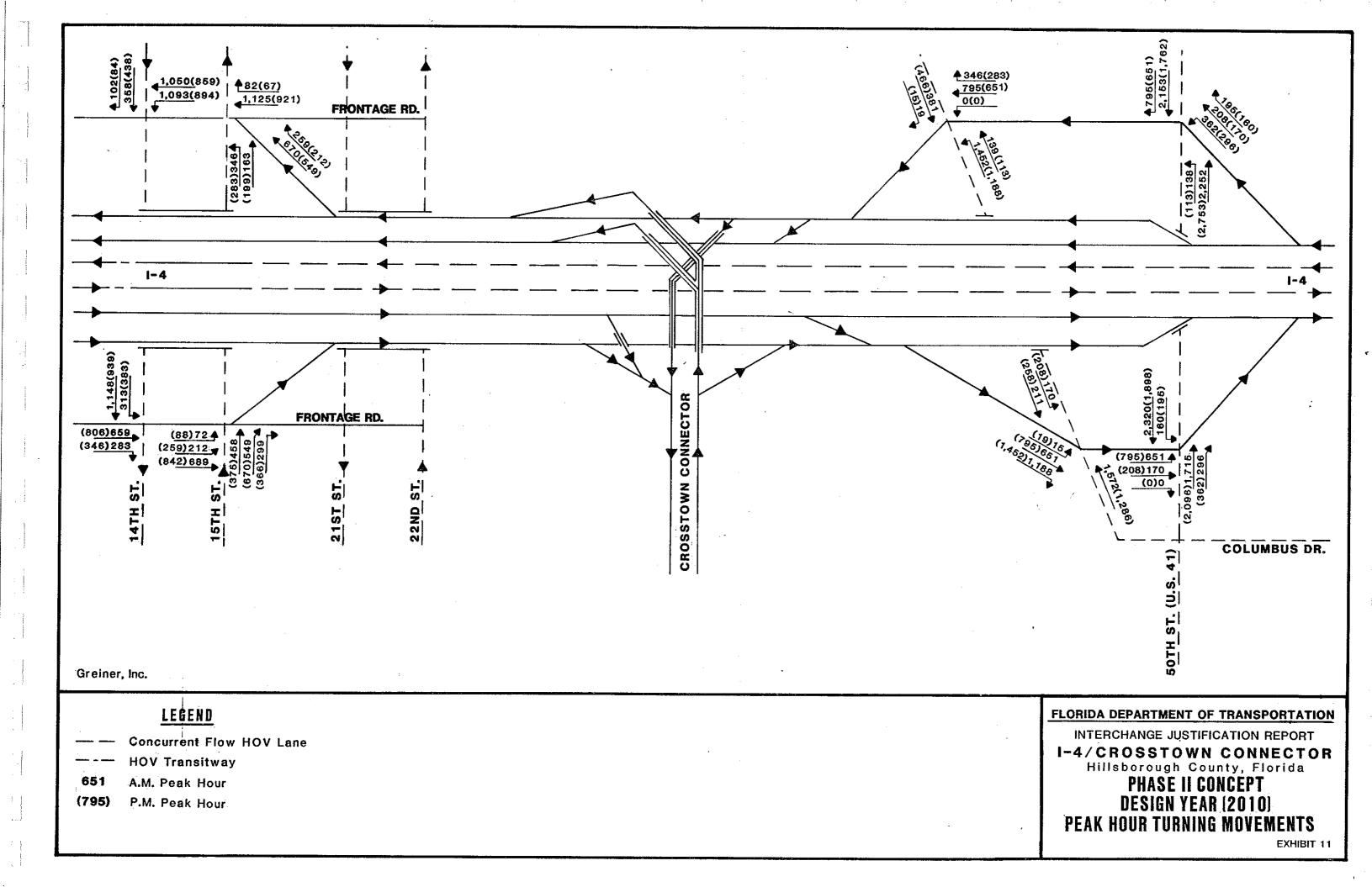


Table 13 summarizes the traffic operations analyses conducted on I-4 and the Crosstown Connector for the design year. Of the 16 locations listed in Table 13, 12 are weaving sections. As indicated in the table, all locations on I-4 are projected to operate at LOS D or better with the Phase II improvement concept. On I-4, six of the 14 locations analyzed will operate at LOS C or better while the remaining eight will operate at LOS D.

The northbound weaving area on the Crosstown Connector is projected to operate at LOS D in 2010. The projected speeds of the weaving and non-weaving vehicles are 41.3 miles/hour and 42.0 miles/hour, respectively. Results of the weaving analysis conducted for the southbound Crosstown Connector indicate that although the weaving vehicles are projected to operate at Level of Service D with an average travel speed of 40.7 miles/hour, the non-weaving vehicles are projected to operate at Level of Service E with an average travel speed of 40.9 miles/hour.

Although this projected non-weaving vehicle speed is approximately 1.1 miles/hour lower than the 42.0 miles/hour speed required for Level of Service D, the eastbound segment of the I-4 express freeway between the on-ramp from the southbound I-275 express freeway and the off-ramp to the Crosstown Connector is projected to operate at Level of Service C. In addition, with the signing of the southbound traffic (north of the Tampa CBD) destined for the Crosstown Connector on the I-275 local freeway, the weaving in this eastbound I-4 express freeway segment will be eliminated. The capacity calculations for the ramp junctions and weaving areas are included in Appendix E.

.

.

.

ļ

• •

.

: |

DESIGN YEAR (2010) I-4/CROSSTOMN CONNECTOR Freeway Operations Analysis Summary - Phase II I-4/Crosstown Connector

		I		<u> Merge Area</u>			Diverge Area		Ì		Weaving Area	a Area	
	Location	Freeway Volume <u>(in vph)</u> 1	Ramp Volume <u>(in vph)</u>	Merge Volume <u>(in pcph)</u>	Merge Level of <u>Service</u>	Ramp Volume <u>(in vph)</u>	Diverge Volume <u>(in pcph)</u>	Diverge Level of <u>Service</u>	Type of <u>Weave</u>	Weaving Speed (in mph)	Heaving Level of Service	Kon-Weaving Speed (in mph)	Non-Weaving Level of Service
	EB 1-4 Express Freeway between SB 1-275 Express Freeway and Crosstown Connector ²	5,698				1,423	1,487 1,113	Uш					
	EB 1-4 Express Freeway off-ramp to EB 1-4 Local Freeway	4,275				1,183	1,781	۵					
36	EB I-4 Express Freeway merge with EB I-4 Local Freeway	3,142	3,105	914	m								
5	EB 1-4 Express Freeway between EB 1-4 Local Freeway and 50th Street/Columbus Drive	6,247							8	44.1	۵	47.1	٩
	EB 1-4 Express Freeway between 50th Street and Buffalo Avenue	7,012							æ	4.4.	۵	47.3	۵
	EB 1-4 Local Freeway between SB 1 1-275 Local Freeway and 15th Street	3,370 et							83	41.6	ပ	42.9	IJ
	EB 1-4 Local Freeway between 15th 4,299 Street and Crosstown Connector	4,299							æ	42.2	U	43.7	U
	EB I-4 Local Freeway between Crosstown Connector and 50th Street/Columbus Drive	5,371							U	40.2	U	36.6	۵
	WB 1-4 Express Freeway between Buffalo Avenue and 50th Street/ Columbus Drive	7,012							×	44.8	۵	52.7	υ
	WB 1-4 Express Freeway between 50th Street and WB 1-4 Local Freeway	6,247							B	9-44	۵	48.1	U .

:

.... .

DESIGN YEAR (2010) I-4/CROSSTOWN CONNECTOR FREEWAY OPERATIONS ANALYSIS SUMMARY - PHASE II I-4/Crosstown Connector (Continued)

				Merge Area			Diverge Area				Weaving Area	Area	
	Location	Freeway Volume <u>(in vph)¹</u>	Ramp Volume <u>(in vph)</u>	Merge Volume <u>(in pcph)</u>	Merge Level of Service	Ramp Volume (in voh)	Diverge Volume <u>(in pcph)</u>	Diverge Level of <u>Service</u>	Type of <u>Veave</u>	Heaving Speed (in moh)	Weaving Level of <u>Service</u>	Non-Veaving Speed (in mph)	Non-Weaving Level of Service
	WB 1-4 Express Freeway on-ramp from WB 1-4 Local Freeway	3,092	1, 183	1,925	۵								
	WB 1-4 Express Freeway between Crosstown Connector and NB 1-275 Express Freeway	6,208							æ	45.3	U	49.2	U
37	WB I-4 local Freeway between 50th Street/Columbus Drive and Crosstown Connector	5,371							U	43.6	U	4 0 *0	٥
	WB I-4 local Freeway between Crosstown Connector and 15th Street	3,789							æ	42.2	U	43.5	Ċ
	SB Crosstown Connector between EB I-4 Local Freeway and EB Crosstown Expressway ²	4,032							æ	40.7	۵	40.9	ш
	NB Crosstown Connector between VB Crosstown Expressway and VB I-4 Local Freeway	4,032							œ	41.3	۵	42.0	۵

 $^{\mathbf{f}}$ Refers to the freeway volume that occurs before merge or diverge.

² Reflects the southbound 1-275 traffic (north of the Tampa CBD) destined for the Crosstown Connector signed for the 1-275 local freeway.

The results of the a.m. and p.m. peak hour ramp terminal operations analyses are summarized in Tables 14 and 15, respectively. These tables indicate that all the ramp terminals will operate at an acceptable level of service in 2010 with the proposed geometry. Table 14 shows that of the eight ramp terminals analyzed in the a.m. peak hour, four will operate at LOS B, three at LOS C and the remaining one at LOS D. Table 15 indicates that in the p.m. peak hour all eight ramp terminals will operate at LOS C or better. The capacity calculations for the ramp terminals are also included in Appendix E.

No-Build Analysis

•

 Even without the proposed I-4/Crosstown Connector interchange, significant improvements to I-4 will need to be implemented by 2010 to provide acceptable operating conditions on this facility. Exhibit 12 contains a schematic illustration of the No-Build (2010) conceptual plan developed for this analysis.

The No-Build Alternative includes the four-roadway system (express and local access freeway lanes) on I-4 between I-275 and 50th Street (U.S. 41) however, there are several major differences between the No-Build Alternative and the Phase II Concept in the design year.

The No-Build Alternative includes the 40th Street interchange (instead of the Crosstown Connector) with ramps to and from the local access freeway lanes (both castbound and westbound). Due to the spacing between the 40th Street and Columbus Drive/50th Street interchanges, both left-side and right-side ramps are required on the local access freeway lanes to provide acceptable levels of service. Two-lane slip ramps connecting the express freeway lanes with the local access freeway lanes are

•

•

· · · • :

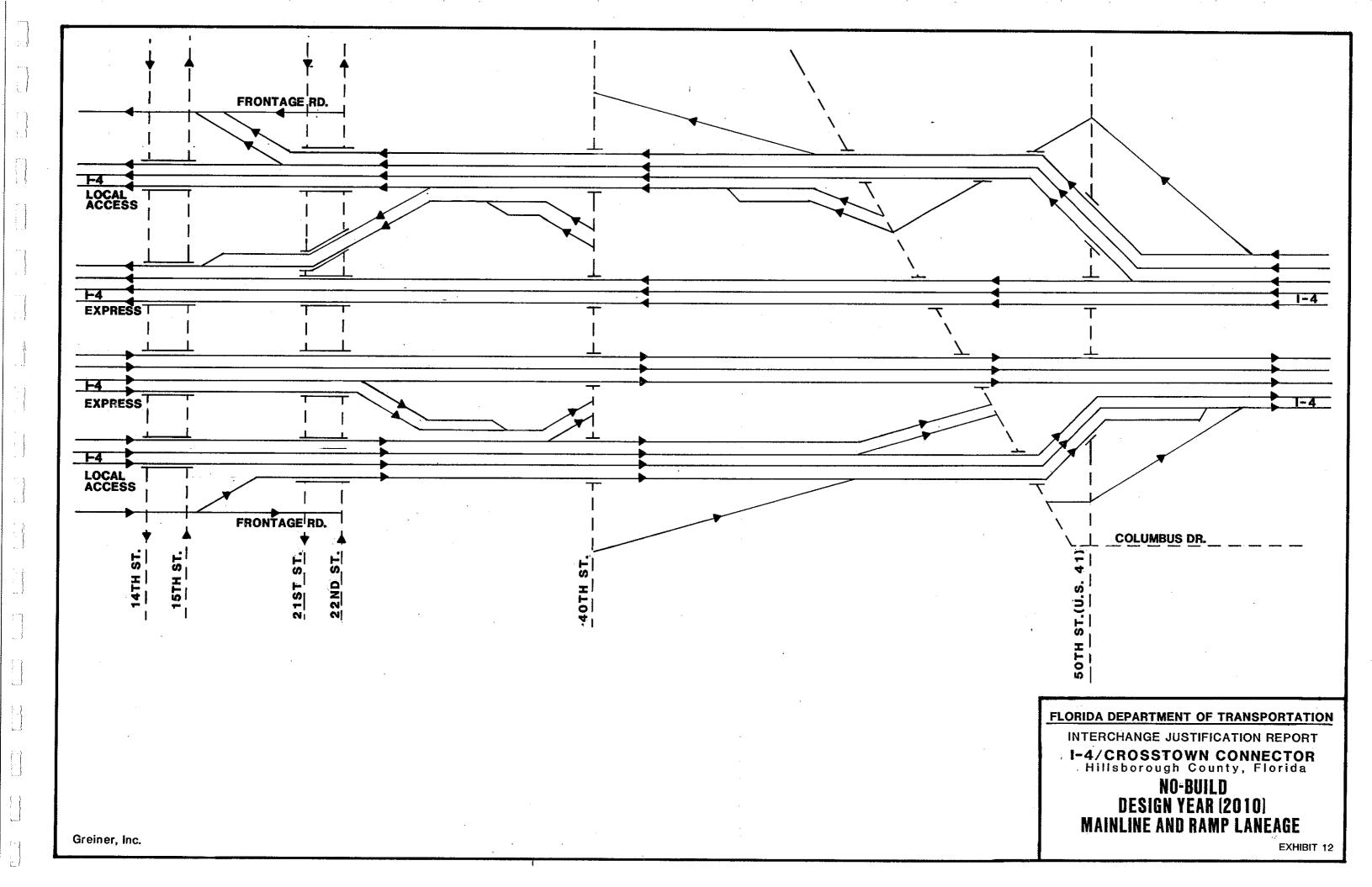
(·

1

.

: 1....

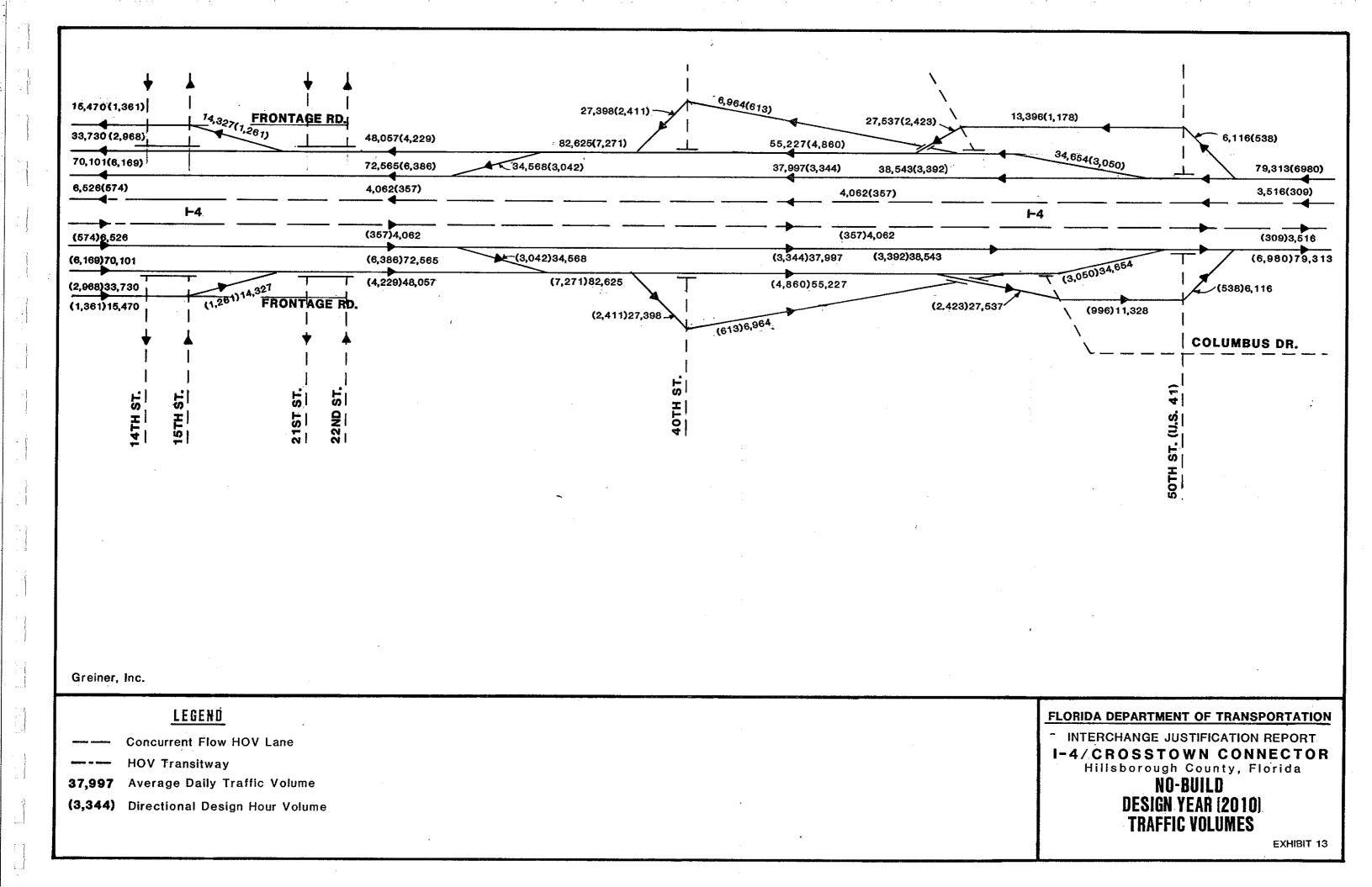
i.

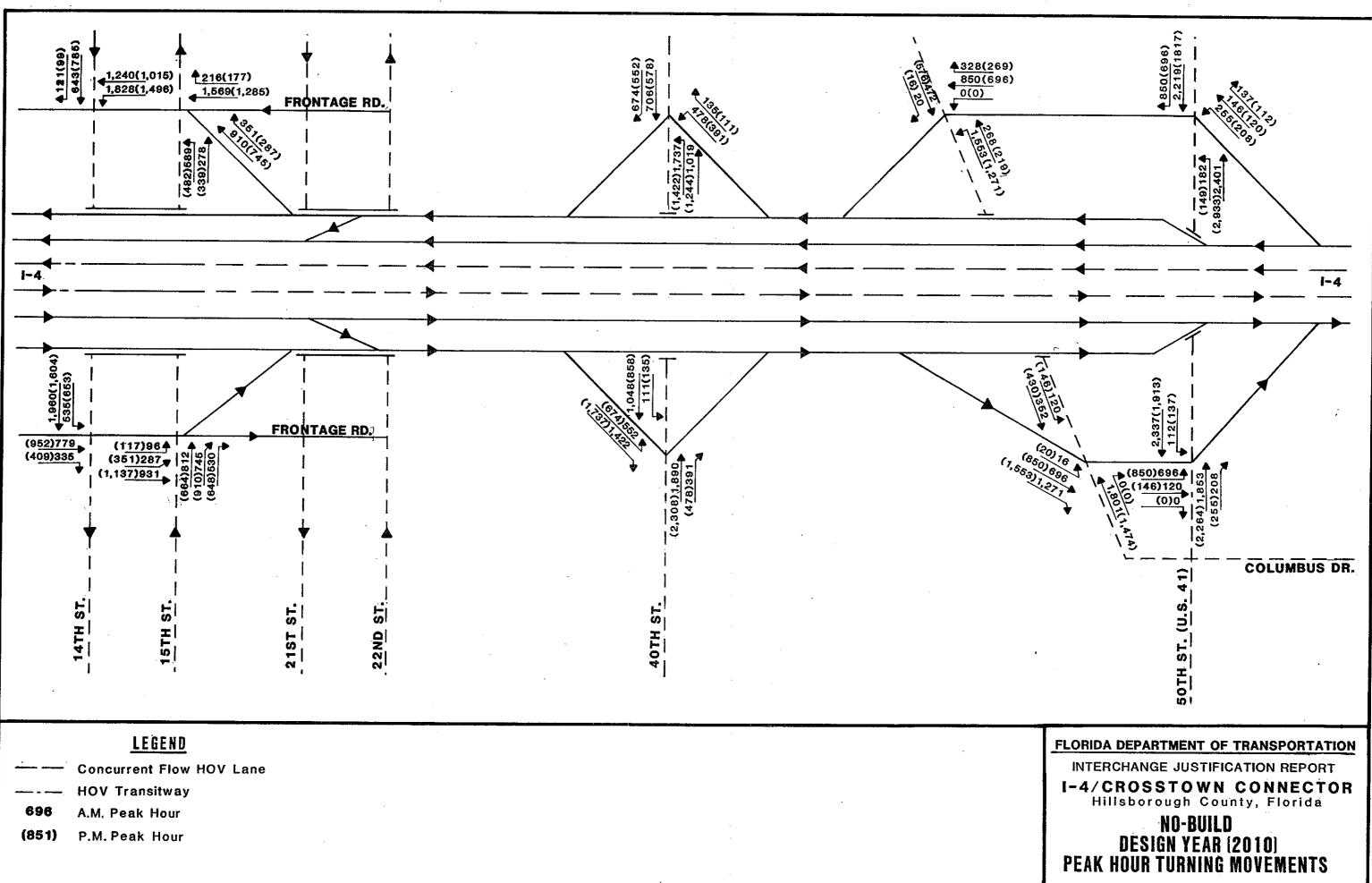

DESIGN YEAR (2010) I-4 RAMP TERMINAL OPERATIONS ANALYSIS SUMMARY-AM PEAK HOUR I-4/Crosstown Connector

Location	Delay <u>(in sec/veh)</u>	V/C <u>Ratio</u>	Level of <u>Service</u>
I-4 Westbound On-Ramp and 14th Street	14.1	0.84	В
I-4 Eastbound Off-Ramp and 14th Street	12.5	0.68	В
I-4 Eastbound On-Ramp and 15th Street	12.7	0.71	В
I-4 Westbound Off-Ramp and 15th Street	15.6	0.74	С
I-4 Westbound On-Ramp and Columbus Drive	27.5	0.96	D
I-4 Eastbound Off-Ramp and Columbus Drive	14.7	0.73	В
I-4 Eastbound On-Ramp and 50th Street	19.2	0.78	С
I-4 Westbound Off-Ramp and 50th Street	19.9	0.84	С

•

DESIGN YEAR (2010) I-4 RAMP TERMINAL OPERATIONS ANALYSIS SUMMARY-PM PEAK HOUR I-4/Crosstown Connector


Location	Delay <u>(in sec/veh)</u>	V/C <u>Ratio</u>	Level of Service
I-4 Westbound On-Ramp and 14th Street	11.7	0.72	В
I-4 Eastbound Off-Ramp and 14th Street	13.7	0.72	В
I-4 Eastbound On-Ramp and 15th Street	16.0	0.87	C
I-4 Westbound Off-Ramp and 15th Street	11.9	0.61	В
I-4 Westbound On-Ramp and Columbus Drive	23.7	0.84	С
I-4 Eastbound Off-Ramp and Columbus Drive	17.0	0.74	С
I-4 Eastbound On-Ramp and 50th Street	23.3	0.92	С
I-4 Westbound Off-Ramp and 50th Street	21.1	0.83	с



provided west of the 40th Street interchange. The 2010 ADT and DDHV's associated with the No-Build Alternative are provided on Exhibit 13. The 2010 a.m. and p.m. peak hour turning movements at the I-4 ramp terminals are provided on Exhibit 14.

Table 16 summarizes the traffic operations analyses conducted on I-4 for the 2010 No-Build Alternative. As indicated in the table, 13 out of 14 locations analyzed will operate at an acceptable level of service with the geometry provided in Exhibit 12. The No-Build Alternative includes eight weaving areas and six ramp junctions. Seven of the eight weaving areas are projected to operate at LOS D or better. The one exception is the westbound I-4 express freeway weaving section between the westbound I-4 local freeway and the northbound I-275 express freeway which is projected to operate at LOS E. Five of the six ramp junctions are projected to operate at LOS C or better while the other one is projected to operate at LOS D. The ramp junction and weaving capacity calculations are included in Appendix F.

Results of the a.m. and p.m. peak hour ramp terminal intersection analyses are summarized in Tables 17 and 18, respectively. Table 17 indicates that nine of the ten ramp terminals are projected to operate at LOS D or better in the a.m. peak hour. The one exception is the intersection of the I-4 westbound on-ramp with Columbus Drive which is projected to operate at LOS E with a v/c ratio of 1.02. The v/c ratio indicates the proportion of available intersection capacity that is being used by vehicles in the critical movements. If the v/c ratio exceeds 1.00, one or more of the critical movements will be oversaturated and breakdowns will occur. Six of the ten ramp terminals are projected to operate at LOS C or better while three are projected to operate at LOS D. Table 18 indicates that all ten ramp terminals will operate at LOS D or better in the p.m. peak hour and four of the ten will operate at LOS C

۰.

V

4

ļ

Î

..... İ.

1

, A

·• ·

. -

۰.

·• -'

.. -

.

NO-BUILD (2010) 1-4 FREEWAY OPERATIONS ANALYSIS SUMMARY 1-4/Crosstown Cornector

		•		<u>Merge Area</u>			Diverge Area				<u> Weaving</u> Area	Area	
	Location	Freeway Volume <u>(in vph)</u> 1	Ramp Volume <u>(in vph)</u>	Merge Volume (in poph)	Merge Level of <u>Service</u>	Ramp Volume <u>(in vph)</u>	Diverge Volume <u>(in poph)</u>	Diverge Level of <u>Service</u>	Type of <u>Heave</u>	Weaving Speed (in mph)	Weaving Level of <u>Service</u>	Weaving Non-Weaving Level of Speed Service (in moh)	Non-Weaving Level of <u>Service</u>
	EB I-4 Express Freeway between SB I-275 Express Freeway and EB I-4 Locai Freeway	6,386							×	41.5	۵	46.2	8
	EB 1-4 Express Freeway between EB 1-4 Local Freeway and 50th Street/Columbus Drive	6,442							ß	43.9	۵	46.8	۵
42	EB 1-4 Express Freeway between 50th Street/Columbus Drive and Buffalo Avenue	6,980							ß	2-44	9	47.7	۵
	EB I-4 Local Freeway on-ramp from 15th Street	2,968	1,261	1,354	U								
	EB 1-4 Local Freeway between EB 1-4 Express Freeway and 40th Street	7,271							æ	40.6	U	40.3	۵
	EB I-4 Local Freeway off-ramp to 50th Street/Columbus Drive	4,860				2,4231,546/1,617	6/1,617	C/C					
	EB 1-4 Local Freeway on-ramp from 40th Street	2,437	613	1,184	υ								
	WB 1-4 Express Freeway between Buffalo Avenue and 50th Street/ Columbus Drive	6,980							¥	45.2	U	53.2	U
	WB 1-4 Express Freeway between 50th Street/Columbus Drive and WB 1-4 Local Freeway	6,442							æ	44.5	۵	47.8	۵

•

,....

.

-

NO-BUILD (2010) I-4 FREEWAY OPERATIONS ANALYSIS SUMMARY I-4/Crosstown Connector (Continued)

•

••

			Merge Area			Diverge Area				Veaving Area	Area	
Location	Freeway Volume (in vph) ¹	Ramp Volume <u>(in vph)</u>	Ramp Merge Volume Volume <u>(in vph) (in pcph)</u>	Merge Level of <u>Service</u>	Ramp Volume (in vph)	Diverge Volume (in pcph)	Diverge Level of <u>Service</u>	Type of <u>Heave</u>	Veaving Veaving Type of Speed Level of <u>Veave (in mph)</u> Service	Weaving Level of Service	Weaving Non-Weaving Non-Weaving Level of Speed Level of <u>Service (in moh)</u> <u>Service</u>	Non-Weaving Level of Service
WB I-4 Express Freeway between WB I-4 Local Freeway and NB I-275 Express Freeway	6,386							æ	41.0	۵	41.4	ш
WB I-4 Local Freeway off-ramp to 40th Street	3,050				613	1,179	U					
WB 1-4 Local Freeway on-ramp from 50th Street/Columbus Drive	2,437	2,4231,660/1,923	0/1,923	0/0	·							
WB 1-4 Local Freeway between 40th Street and EB 1-4 Express Freeway	7,271							m .	41.5	U	42.0	U
WB I-4 Local Freeway off-ramp to 15th Street	4,229				1,261 987/1,116	17/1,116	8/8					

۰.

•

.

.

 1 Refers to the freeway volume that occurs before merge or diverge.

۰.

•

. .

and the second second

ι.

. · . ·

NO BUILD (2010) I-4 RAMP TERMINAL OPERATIONS ANALYSIS SUMMARY-AM PEAK HOUR I-4/Crosstown Connector

Location	Delay (in sec/veh)	V/C <u>Ratio</u>	Level of <u>Service</u>
I-4 Westbound On-Ramp and 14th Street	11.0	0.85	В
I-4 Eastbound Off-Ramp and 14th Street	26.7	0.99	D
I-4 Eastbound On-Ramp and 15th Street	14.9	0.84	В
I-4 Westbound Off-Ramp and 15th Street	22.4	0.97	С
I-4 Westbound On/Off-Ramps and 40th Street	30.9	0.98	D
I-4 Eastbound On/Off-Ramps and 40th Street	29.7	0.72	D
I-4 Westbound On-Ramp and Columbus Drive	57.5	1.02	E
I-4 Eastbound Off-Ramp and Columbus Drive	24.3	0.79	С
I-4 Eastbound On-Ramp and 50th Street	21.5	0.81	С
I-4 Westbound Off-Ramp and 50th Street	19.1	0.82	С

·• ·`

·• •'

· .

and the second second

· •

.

NO BUILD (2010) I-4 RAMP TERMINAL OPERATIONS ANALYSIS SUMMARY-PM PEAK HOUR I-4/Crosstown Connector

Location	Delay <u>(in sec/veh)</u>	V/C <u>Ratio</u>	Level of Service
I-4 Westbound On-Ramp and 14th Street	10.8	0.75	В
I-4 Eastbound Off-Ramp and 14th Street	30.2	1.01	D
I-4 Eastbound On-Ramp and 15th Street	27.9	1.02	D
I-4 Westbound Off-Ramp and 15th Street	13.1	0.80	В
I-4 Westbound On/Off-Ramps and 40th Street	20.3	0.80	С
I-4 Eastbound On/Off-Ramps and 40th Street	30.8	0.88	D
I-4 Westbound On-Ramp and Columbus Drive	28.8	0.90	D
I-4 Eastbound Off-Ramp and Columbus Drive	26.5	0.79	D
I-4 Eastbound On-Ramp and 50th Street	25.6	0.94	D
I-4 Westbound Off-Ramp and 50th Street	14.9	0.82	В

or better. However, the v/c ratios at two ramp terminals, the I-4 eastbound off-ramp at 14th Street and the I-4 eastbound on-ramp at 15th Street, are projected to exceed 1.00. The capacity calculations for the ramp terminals are also included in Appendix F.

ALTERNATIVE ROUTES

. .

The No-Build Alternative would severely impede traffic flows on the north-south arterials that interchange with I-4 and the South Crosstown Expressway. Without the proposed I-4/Crosstown Connector and its associated interchange, trips from I-4 to the South Crosstown Expressway and the return movements would have to use 14th/15th Streets, 40th Street or 50th Street, as well as Columbus Drive. The projected 2010 traffic volume on 14th/15th Streets would increase from 12,300 vehicles per day (vpd) to 20,500 vpd north of I-4 and from 34,000 vpd to 53,900 vpd south of I-4 without the Crosstown Connector. On Columbus Drive the ADT volume would increase from 11,000 vpd to 13,500 vpd north of I-4 and from 37,300 vpd to 43,000 vpd south of I-4. On 40th Street, the ADT volume would increase from 18,200 vpd to 31,400 vpd north of I-4 and from 18,200 vpd to 63,300 vpd south of I-4. Much smaller increases in daily traffic volumes would occur on 50th Street in the absence of the Crosstown Connector. North of I-4, the ADT would increase from 67,000 vpd to 69,800 vpd while south of I-4 the ADT volume would increase from 54,300 vpd to 55,200 vpd. These north-south arterials do not have sufficient capacity to accommodate the additional travel demand in the No-Build Alternative at an acceptable level of service.

Using the projected 2010 No-Build ADT volumes and the "Generalized Daily Level of Service Maximum Volumes for Florida's Urbanized Areas," the minimum lane requirements needed to provide an acceptable level of service for each of the alternative routes was estimated. Based on this analysis it was determined that fourlane one-way arterials would be required to provide acceptable levels of service on 14th/15th Streets south of I-4 and three-lane one-way arterials north of I-4. On 40th Street south of I-4 and 50th Street north and south of I-4, four-lane access controlled expressways are required to provide an acceptable level of service. North of I-4 on 40th Street, a six-lane arterial is required. On Columbus Drive, a four-lane arterial is required north of I-4 and a six-lane arterial is required south of I-4.

As discussed earlier, the intersection of the I-4 westbound on-ramp and Columbus Drive will not operate at an acceptable level of service (D or better) in 2010 in the a.m. peak hour with the No-Build Alternative. In addition, two of the ten ramp terminals in the p.m. peak hour are projected to operate with critical v/c ratios greater than 1.00 in the No-Build Alternative. As stated previously, critical v/c ratios greater than 1.00 indicate that one or more of the critical movements will be oversaturated.

Given these conditions, significant improvements would need to be made to the arterial street system to accommodate the travel demand if the Crosstown Connector is not implemented.

COST-EFFECTIVENESS ANALYSIS

A cost-effectiveness analysis (CEA) was also conducted for the proposed I-4/Crosstown Connector project. The analysis was performed to define, in economic terms, the net

benefits which can be expected to result if the proposed improvements are undertaken. The analysis compares the costs of implementing the improvements against the road user benefits which can be expected to accrue from having the improvements in place. <u>Costs</u> include engineering design, right-of-way acquisition, construction, maintenance, and operation costs of the new facility. <u>Benefits</u> include the reduction in road-user costs which would be expected to result from traffic operations on the more efficient and safer transportation network. The specific components of benefits and costs are discussed in detail in this section.

Methodology and Parameters

The methodology used in this analysis follows guidelines written in the American Association of State Highway and Transportation Officials (AASHTO) publication, <u>A</u> <u>Manual On User Benefit Analysis Of Highway And Bus-Transit Improvements</u>, 1977, hereinafter referred to as the "AASHTO manual." The AASHTO manual is the nationally accepted handbook of methodologies for conducting transportation project cost-effectiveness analyses. The AASHTO procedure emphasizes road user benefits and highway agency costs. Secondary and tertiary costs and benefits, which are difficult or impossible to quantify, are not included.

Present Value

The AASHTO Manual methodology prescribes the computation of "present value" (PV) for the periodic costs and benefits for a No-Build alternative and for each of the improvement alternatives over a specific time period to identify incremental costs and benefits attributable to the project. As defined in the AASHTO manual, "present

value" is an economic concept representing the translation of costs and/or benefits occurring over time into a single amount at a single instant (usually the present), and can also be called "present worth." "Net present value" refers to the net cumulative present value of a series of costs and benefits occurring over time, and is derived by applying, to each cost or benefit in the series, an appropriate discount factor which converts each cost or benefit to a present value. All costs, benefits, and other values presented in monetary terms are expressed in constant 1989 dollars.

Discount Rate

•••

Selection of the appropriate "discount rate" for use in computing present value of future costs and benefits is important. The following passage from the AASHTO manual provides guidance to discount rate selection:

"The discount rate for performing present value calculations on public projects should represent the opportunity cost of capital to the taxpayer, i.e., the estimated average market rate of return. However, the common practice of calculating benefits in constant dollars (usually at prices prevailing when the economy study is made) and discounting benefits at market rates of interest is in error, because the market or nominal rate of return includes (1) an allowance for expected inflation as well as (2) a return that represents the real cost of capital. Thus, if future benefits or costs are in constant dollars, they will be understated in relation to a market rate of return. <u>Hence, if future benefits and costs are calculated in constant dollars, only the real cost of capital should be represented in the discount rate used</u>. The real cost of capital has been estimated at about 4 percent in recent years for low-risk investments."

Based on the rationale presented above, four percent was selected as the discount rate for this analysis. However, the sensitivity of the analysis to increases in the discount rate was also examined and the results presented for discount rates of four, seven and ten percent. Discount rates greater than four percent yield more conservative results

because future year benefits, which are greatest in later years, are discounted more. This results in a lower present value of benefits available to offset project costs. Project costs are primarily composed of initial investment costs and occur in the earlier years. Thus, project costs are discounted less, resulting in a greater proportion of costs to benefits.

Time Period of the Analysis

Determination of the analysis period is another important element of the study. For the present study, the years 1993 through 2010 were used. Ideally, costs and benefits for investments should be analyzed over their entire economic lifetime which ranges from about five years for pavement markings to more than 50 years for earthwork and some bridges. However, road user benefits can only be computed based on traffic volume projections which are rarely available for more than 20 to 25 years into the future. For this analysis, traffic volume projections are available through the year 2010.

A construction schedule has been established for the purpose of conducting this analysis. Construction is assumed to take place in two phases. The initial phase (Phase I) is scheduled to occur during 1993 and 1994, opening to traffic in 1995. The final phase of construction (Phase II) will occur from 1997 through 1999. For the analysis, it was assumed that all of the required right-of-way would be acquired during initial construction. User benefits were calculated to begin in 1995 and continue through the end of the analysis period (2010).

In addition, benefits in years beyond 2010 would be realized as a result of the initial investment, but cannot be quantified for lack of traffic volume projections for these

years. Benefits will therefore most probably be more than those identified in the analysis. As such, if the project is found to be cost-effective using these conservative assumptions, the project sponsor can be confident of its economic desirability.

Measures of Economic Desirability

The output of this analysis is a series of indicators of economic feasibility and desirability. These indicators include:

- * Net Present Value (NPV) the difference between the present value of the total periodic benefits and the present value of the total periodic costs.
- * Benefit/Cost (B/C) Ratio the ratio of the present value of the total periodic benefits to the present value of the total periodic costs.
- * Payback Period the length of time required for the present value of accumulated benefits to exceed the present value of accumulated costs.
- Internal Rate of Return (IRR) a measure of the profitability of the project, IRR is equal to the discount rate at which NPV = 0 and B/C = 1.0.

The NPV and B/C are calculated using equations (1) and (2), respectively:

$$NPV = PV(\Delta U) - [PV(\Delta I) + PV(\Delta M) - PV(\Delta R)]$$
(1)
B/C = PV(\Delta U) + [PV(\Delta I) + PV(\Delta M) - PV(\Delta R)] (2)

Where:

:....

PV = the present value of the associated parenthetical amount or series of amounts over time, discounted at the selected discount rate.

 ΔU = the reduction in the series of annual highway user costs due to the investment (costs without the improvements less costs with the improvements); also termed "User Benefit."

 ΔI = the increased investment costs due to the construction of the improvements.

 ΔM = the increase in annual maintenance and operating costs due to the construction of the improvements.

 ΔR = the residual value of the improvements less the residual value of the no-build scenario (assuming the no-build scenario requires some improvements) at the end of the analysis period.

The "payback period" and "internal rate of return" measures are derived from the NPV and B/C calculations. The determination of the values used in the calculations is discussed below.

Determination of Benefits and Costs

In this section, each of the components introduced in equations (1) and (2) is explained and discussed in detail.

"∆U" User Benefits

The determination of the economic benefits to the highway user resulting from the proposed facility is an important step in determining cost-effectiveness. The AASHTO manual prescribes the computation of total road user costs ("U") for the proposed improvement and for a No-Build alternative. The difference between these, " ΔU ", represents the reduction in road user costs attributable to the proposed improvement, and reflects a "benefit" that is used in the benefit/cost (B/C) calculation.

For each alternative studied, "U" is a summation of three separate cost items: 1) <u>vehicle operating costs</u>, including fuel (gasoline), lubricating oil, tire wear, auto maintenance (and repair), and depreciation (new car) costs; 2) <u>vehicle travel time</u>

<u>costs</u>, or the cumulative dollar value of the vehicle occupants' time as they travel on a given facility at a given speed; and 3) <u>vehicle accident costs</u>, based on a historic average of the total dollar value of all fatality, injury, and property-damage accidents which occur in one year.

The AASHTO manual provides numerous tables, nomographs, charts, and formulas for computing or determining the values of the various components of "U" and prescribes that future users of the information should index the prices to current values using the Consumer Price Index (CPI).

Since the publishing of the AASHTO manual, the State of Alabama Highway Department Bureau of Urban Planning has consolidated the AASHTO manual procedures for determining " ΔU " into a more readily usable format. The results of this are contained in a handbook entitled <u>Road User Costs</u> (1980).

Vehicle Operating Costs

Vehicle operating costs are provided in the <u>Road User Costs</u> document, by road type and travel speed, for various price levels of gasoline. For the I-4/Crosstown Connector CEA, vehicle operating costs were determined based on a gasoline price of \$1.00/gallon.

Vehicle Travel Time Costs

In determining vehicle travel time costs, the AASHTO manual used two studies from the University of Chicago and Stanford Research Institute which established the value of commuter travel time in the late 1960's to be approximately \$2.80 per hour. The

AASHTO manual used more recent findings of a <u>Highwav Research Record</u> study which indicated that the monetary value of travel time is sensitive to trip purpose, travelers' income levels, and the amount of time saved during a trip. Based on this research, the AASHTO manual provides a table for the value of travel time as a function of time saved and trip type. In the <u>Road User Cost</u> document, a value of \$3.69 per hour per vehicle occupant is used. This represents the monetary value associated with a 5 to 15 minute work trip. This value was multiplied by a national average work trip auto occupancy of 1.25 persons per vehicle resulting in a monetary value of \$4.61 (March 1980 dollars) per vehicle hour of travel time.

To index that value to present day (January 1989) dollars, the CPI was used as follows:

<u>CPI. January 1989</u> = $\frac{362.8}{239.8}$ = 1.5129 update factor

\$4.61 (March 1980 value) x 1.5129 update = \$6.97/vehicle hour

Accident Costs

Accident costs per vehicle mile of travel were computed in the <u>Road User Cost</u> document using historic vehicle accident data for the State of Alabama and accident costs (by type of accident) obtained from the National Safety Council. Since the accident cost per vehicle mile calculated for Alabama agrees closely with the AASHTO manual average accident cost for a mix of freeway and non-freeway facilities, the Alabama accident cost values were used in this analysis, updated to present day dollar values.

Total Road User Costs

Ū.

Total road user costs for the Build and No-Build alternatives for the years 1995 and 2010 were calculated using the traffic projections obtained from the FSUTMS simulations and the tables, nomographs, and equations provided for that purpose in the AASHTO manual and the <u>Road User Costs</u> document. The results are summarized in Table 19.

TABLE 19

ROAD USER COSTS

<u>Alternatives</u>	Year	Daily Vehicle Miles Traveled (VMT)	Daily Road User Costs ("U")	<u>Cost/VMT</u>
No-Build	1995	26,290,000	\$13,471,200	\$0.5124
Phase I	1995	26,289,000	\$13,435,800	\$0.5111
No-Build	2010	41,845,000	\$24,189,600	\$0.5781
Phase II	2010	41,861,000	\$24,045,500	\$0.5744

Using the values in Table 19, the daily road user benefits for the proposed project were calculated using equation (3) below:

Road User benefits =
$$[\underline{U}_0 - \underline{U}_1] \times [\underline{V}_0 + \underline{V}_1]$$
 (3)

Where:

, ----, ---, ----

- U_0 = the road user cost per vehicle mile of travel without the improvements (No-Build)
- U_1 = the road user cost per vehicle mile of travel with the improvements (Build)

 V_0 = the vehicle miles of travel without the improvement (No-Build)

 V_1 = the vehicle miles of travel with the improvement (Build)

The road user benefits calculated using equation (3) are listed in Table 20.

TABLE 20

ROAD USER BENEFITS

<u>Alternative</u>	Year	Daily Road User Benefits <u>("△U")</u>	Annual Road User Benefits <u>("AU")</u>
Phase I	1995	\$34,176	\$12,474,240
Phase II	2010	\$154,856	\$56,522,440

As shown in the table, the annual road user benefits for the years 1995 and 2010 are approximately \$12.5 million and \$56.5 million, respectively. To determine " ΔU " for intermediate years in the analysis period, an average compound growth rate of 10.6 percent per year was used.

•

.....

: }

" ΔI " is the difference between the investment cost for the Build alternative and the investment cost for the No-Build alternative. As stated earlier, I-4 would require substantial investment expenditures even without the Crosstown Connector to provide an acceptable level of service.

" Δ I" includes costs for engineering design, right-of-way acquisition, and construction of the improvements. For this analysis, it is assumed that construction activity would occur in two phases. Right-of-way acquisition would occur during the first phase. A summary of these investment costs is provided in Table 21.

TABLE 21

INVESTMENT COSTS ("\(\Lambda I''))

<u>Item</u>	<u>Build</u>	<u>No Build</u>	<u>"∆I"</u>
Construction	\$140,348,118	\$111,832,985	\$28,515,133
Right-of-Way & Relocation	38,000,000	37,495,000	505,000
Administrative & Contingencies	47,571,855	40,345,297	7,226,558
TOTAL	\$225,919,973	\$189,673,282	\$36,246,691

" MM" Maintenance Costs

.

Maintenance costs include routine or periodic upkeep of the facility (patching, striping, bridge painting, drainage cleanout, landscaping) and replacements (pavement resurfacing, crash barrier replacement). Ideally, the cost for maintenance of proposed facilities is determined through historic maintenance records for similar, in-place facilities held by the agency with jurisdiction. In the present analysis, historic annual maintenance costs indicate that \$2,500 per lane mile is an appropriate maintenance cost estimate. It was determined that approximately five and seven and one-half lane miles would be constructed in the initial and second construction phase, respectively. Thus, annual maintenance costs were estimated to be \$12,500 starting in 1995, increasing to \$18,750 in 2000.

"**AR**" Residual Value

The residual value of the improvements is computed by multiplying the estimated construction cost by a factor which represents the portion of remaining useful life of the improvements and then adding the full cost of land for right-of-way (excluding

legal costs and costs due to relocations, business damages, and demolition activities). In the present analysis, the life of the roadway portions of the facility is estimated at 25 years. Bridge elements are assumed to have a useful life of approximately 50 years. Since the study period encompasses only 18 years due to the data limitations discussed earlier, the residual value of the improvements will be substantial. The value of " ΔR " is calculated by taking the residual value of the Build alternative and subtracting the residual value of the No-Build alternative. In the final year of the analysis, 2010, " ΔR " is estimated to be \$15,874,952.

<u>Results of the Analysis</u>

As discussed previously, outputs of the analysis include:

- Benefit/Cost Ratio (B/C)
- * Net Present Value (NPV)
- Payback Period

، ا ا Internal Rate of Return (IRR)

Table 22 provides the results of the computations of these cost-effectiveness indices for the proposed I-4/Crosstown Connector. Table 22 provides year-by-year benefits and costs, as well as a "running computation" of NPV and B/C using a four percent discount rate. As indicated in Table 22, the net present value is \$280 million, the B/C ratio is 12.23, the payback period is 4 years and the IRR is 55.77 percent.

Economic desirability of a project is indicated by a NPV which is greater than zero, a B/C ratio greater than 1.0, and an IRR greater than the discount rate. Table 22 indicates that the I-4/Crosstown Connector interchange well exceeds these criteria. Therefore, the alternative is economically feasible in terms of road user savings.

TABLE 22

·• • •

1

.....

1

.

. · .' ۰,

· : .

.... ÷ ŀ ÷.

COST- EFFECTIVENESS ANALYSIS NET PRESENT VALUE AND BENEFIT/COST RATIO 1-4/Crosstown Connector

Benefit/Cost Ratio*** <u>(B/C)</u>	000		0.00	0.00	1. 24	1.57	1.75	1.99	21.6	200	7 54	10.0	4.08	4.68	5.33	4 01 10		0.74	7.52	8.34	12 23		L T	¥)).cc
Net Present Value** <u>(NPV)</u>	VE BUB 2731	(10 150 700)		(000,000,1)		15,5/2,49/	21,751,194	32.538.757	48 210 777	64 878 50T			101,457,531	121,507,333	142,830,361	165 507 345	324 7C7 004	CC1 ' + 70' A01	272,272	242,548,123	270 202 443			= Linta
Residual Value <u>("MR")</u>	c	, c	, c		~ c	-	0	0	0	Ċ	• =		D	0	0	0	Ċ	0	•	0	15.874.952		Note: Internel Bata of Botton -	יי זוורכיוומו אמרב חו
Maintenance Costs <u>(!t\M")</u>	0		12 500	12 500	12 500		12,500	12,500	18,750	18.750	18. 75.0		UC7 ,81	18, 750	18, 750	18, 750	18, 750	10 750	067 01	18, 750	18, 750	•	Note Note	
Investment Costs <u>('फा'')</u>	8,808,233	10,765,618			5,001,852		0,000,000	5,001,852	0	0	0	• c		0	0	0	0		.	0	0			
User Benefits <u>("W")</u>	0	0	12.474.370	13, 796, 391	15,258,519	14 BTF 403		10,400,51	20,642,059	22,829,684	25,249,151	27 025 121		30,884,498	34,157,606	37, 777, 595	41, 781, 227	46 200 160		11, 106, 360	56,522,561		20	
Compound Interest Factor <u>(PV)</u>	1.0000	0.9615	0.9246	0-8890	0.8548	n 8210	0 2002	504/ D	0.7599	0.7307	0.7026	0.6756		0440	0.6246	0.6006	0.5775	0.5553		0.000	U.5154		Assumes Discount Rate = 4%	אd - (וושעוו)אd + (וו]עוו)אd - (וותאו)אd = VV(
<u>Year</u>	1993	1994	1995	1996	1997	1008	1000	777	2000	2001	2002	2003	7000	2001	5002	2006	2007	2008		2002	2010		Assumes	Nd = NdN **

** NPV = PV("ULU") - [PV("UL") + PV("UM") - PV("UR")] *** B/C = PV("ULU") / [PV("UL") + PV("UM") - PV("UR")]

(Constant 1989 Dollars)

Table 23 presents a summary of the cost-effectiveness indices at discount rates of four, seven and ten percent. This table shows the sensitivity of the analysis with respect to interest rate. The I-4/Crosstown Connector interchange exceeds traditional criteria for cost-effectiveness analysis even at the seven and ten percent discount rates. Therefore, the proposed I-4/Crosstown Connector is an economically sound investment of public dollars.

As mentioned previously, only road user benefits were used to represent "benefits", and only facility construction and maintenance costs were used to represent "costs". No attempt was made to quantify and include indirect benefits which may result from the proposed project (for example, new business activity generated as a result of the project). In addition, no attempt was made to identify secondary benefits which may accrue from increased property values along the facility, or secondary costs which may accrue from deflated property values. Finally, no attempt was made to quantify and include environmental costs, aside from the inclusion in the project construction cost estimates of measures to minimize adverse air, water, and noise impacts.

The results of the CEA clearly indicate that the economic benefits that will be derived from traveling on the improved Interstate system, including the I-4/Crosstown Connector, will more than offset the costs of constructing and maintaining the facility.

ENVIRONMENTAL OVERVIEW

A preliminary environmental overview was also conducted for the proposed project to identify potential environmental impacts to be addressed in a separate environmental

TABLE 23

COST-EFFECTIVENESS ANALYSIS SUMMARY I-4/Crosstown Connector

Discount <u>Rate</u>	<u>B/C</u> (a)	NPV(b) <u>(in millions)</u>	Payback(c) <u>Period</u>	<u>IRR</u> (d)
4%	12.23	\$279.7	4 years	55.77%
7%	8.73	\$200.1	4 years	55.77%
10%	6.62	\$145.9	4 years	55.77%

. - Î

. .

- (a) B/C = Benefit/Cost ratio; the ratio of the net present value of the total periodic benefits to the net present value of the total periodic costs.
- (b) NPV = Net Present Value; the difference between the present value of the total periodic benefits and the present value of the total periodic costs.
- (c) Payback Period = The length of time required for the present value of the accumulated benefits to exceed the present value of the accumulated costs.
- (d) IRR = Internal rate of return; a measure of profitability of an investment, IRR is equal to the discount rate for which NPV = 0 and B/C = 1.0.

document prepared by the THCEA consultant in their on-going PD&E Study. Included in this overview was the identification of potential impacts relative to:

- * Social Environment
- * Cultural Environment
- * Natural Environment
- Physical Environment

The following sections present a brief discussion of the potential environmental impacts.

Social Environment

. '

....

Land use changes are expected to be significant as a result of the proposed project. The additional 300 feet of right-of-way needed, for construction of the local freeway, will require the acquisition of both business and residential properties. Due to the relocation of the 21st/22nd Street Ramps to 14th/15th Streets, there is also potential for land use changes in the existing mixed-use area around 14th and 15th Streets, however, local land use agencies will have ultimate control over this situation.

Adverse impacts on community cohesion are expected to be minimal. Although the proposed action will cause a minor encroachment of the Ybor City District, there will be no further splitting of the neighborhood or the social isolation impacts often triggered by such a division. Furthermore, it is anticipated that there will be no separation of residences from the community facilities within their service area.

The proposed action will, however, have some positive impacts on the Ybor City District. The obvious impact will be improved access to and from the area. This improved access would in turn enhance the potential for new development.

Relocation due to the proposed action will be significant. Business and residential displacement will occur on both sides of the existing interstate throughout the length of the project. However, the most extensive displacement will occur between 14th Street and 34th Street.

Impacts on churches and schools will be minimal. None of these facilities will be taken as part of the proposed right-of-way acquisition, however, there are several of these facilities within the near vicinity of the project. Within three blocks of the project area, there are six churches and three schools. The schools include the Ybor branch of Hillsborough Community College, Gary Public School and Oak Park Elementary. School districts will not be affected by the proposed action.

The proposed improvements will significantly impact certain ethnic and minority groups. These improvements were, however, developed in accordance with the Civil Rights Act of 1964, as amended by the Civil Rights Act of 1968.

Cultural Environment

It is anticipated that there will be significant impacts to 4(f) lands. Within the area of the proposed project, nearly all 4(f) involvement will concern properties of potential historical significance. The existing interstate and proposed local freeway are located within both the Barrio Latino Local District (established 1975) and the proposed district expansion to the National Register District (established 1974). Further discussion of the Historic Districts and potentially affected sites is found below. Other 4(f) involvement is expected to be minimal as no other category, of 4(f) sites, will be directly impacted by the proposed local freeway.

There will be a significant impact on historic sites within the project area. Structures within the Barrio Latino Local District and the proposed district expansion to the National Register District will be directly affected. According to current plans, right-of-way takes will involve potentially significant historic structures within the above mentioned districts as well as potentially significant historic structures outside the designated districts. According to the local Historical Board, there are approximately 118 structures within the project area which they consider to contribute to the historical significance of the district. As of this date, no structures listed on the National Register will be affected.

It is anticipated that the local freeway will have no impact on any archaeological sites. Initial data collection has not revealed the presence of any archaeological sites, however, the Department of Transportation will have to perform a survey to confirm this.

The local freeway is not expected to directly impact any parks or other recreation areas.

Natural Environment

ì

i Lui

-

The proposed local freeway and accompanying drainage system are not anticipated to adversely impact the area's existing water quality.

The 100 year floodplain is not located within the project area therefore floodplain impacts will be minimal. Located on the southside of the proposed improvement between 25th Street and 31st Street is an area that is intermittently subject to flooding at an average depth of less than one (1) foot.

There are no anticipated impacts on coastal zone consistency.

Literature reviews indicate that there may be several endangered or threatened species occurring within the study area, however, due to the nature of the highly urbanized area, it is unlikely that any threatened or endangered species are present. No designated critical habitats for endangered or threatened species exists within the vicinity of the proposed project. Field reviews performed in 1988 did not reveal the presence of any threatened or endangered species. Therefore no impact is expected.

Physical Environment

. .

Noise impacts may be significant for the proposed project. An initial inventory of noise sensitive sites revealed 67 sites that could be affected by the new project.

This project is in an air quality nonattainment area which has transportation control measures in the State Implementation Plan (SIP) approved by the Environmental Protection Agency on June 15, 1981. The FHWA has determined that both the transportation plan and the transportation improvement program conform to the SIP. The FHWA has determined that this project is included in the transportation improvement program for Hillsborough County. Therefore, pursuant to 23FR 770.9(c)(2) this project conforms to the SIP. Impact is anticipated to be minimal.

During construction activities of the study area, consideration will be given to air, noise, water quality, traffic flow and visual impacts.

Air quality impacts should be temporary and will primarily be in the form of emissions from diesel-powered construction equipment and dust from embankment and haul road areas.

Noise vibrations impacts will occur from heavy equipment movement and construction activities, such as pile driving and compaction of embankment.

Water quality impacts resulting from erosion and sedimentation should be controlled and minimized.

Maintenance of traffic and sequence of construction will be planned and scheduled to minimize traffic delays throughout the study area.

According to prior hazardous materials investigations, impact to hazardous material sites should be minimum.

FINANCIAL ACTION PLAN

FDOT and the Tampa Hillsborough County Expressway Authority (THCEA) consider the I-4/Crosstown Connector an integral part of the efficient operation of the Tampa Expressway System and are committed to jointly funding the project. The exact amount of funding to be provided by each participant will be determined at a later date pending further feasibility and traffic and revenue studies. The current status of the project development and funding commitment is as follows:

* The FDOT is currently preparing an Environmental Impact Statement (EIS) as part of the Tampa Interstate Study (TIS). The segments included in the EIS are: I-275 from Dale Mabry Highway to Dr. Martin Luther King, Jr. Blvd.; I-4 from I-275 to 50th Street; and the I-4/Crosstown Connector. The THCEA could begin design on the Connector following approval of the IJR. The PD&E study must be completed before the final design is completed.

- * The THCEA completed a preliminary feasibility study for this project in 1987. The results of that study indicated the project would be a feasible toll project. As a result, the THCEA will finance the design of the Connector as soon as the IJR is approved.
- * Following final design, the THCEA will update the feasibility study by obtaining new traffic and revenue information. This feasibility study will determine the amounts to be financed by the participants. The FDOT amount will be a mixture of federal and state funds with the breakdown to be determined following the completion of the feasibility study.

SUMMARY AND ACTION

•

The proposed I-4/Crosstown Connector interchange provides a vital freeway to freeway link between I-4 and the South Crosstown Expressway. As documented herein, traffic operations on I-4 will provide an acceptable level of service in the design year with the proposed improvement. Furthermore, without the Crosstown Connector, vehicle trips between I-4 and the South Crosstown Expressway would be required to use the existing arterial street system. The existing arterial street system would require substantial improvements beyond those outlined in the long-range plan to accommodate projected traffic volumes safely and efficiently without the proposed project. The addition of the Crosstown Connector will divert a substantial number of vehicles from 14th/15th Streets, 40th Street and 50th Street, thus enabling these roadways to maintain an acceptable level of service in the future.

The proposed project will also improve traffic flow as a maintenance of traffic route during reconstruction of the Interstate. The Crosstown Connector will provide an alternative route for traffic on I-4 to access the CBD during the reconstruction of the downtown and I-4/I-275 interchanges.

In view of the facts presented in this report, it is proposed and recommended that the I-4/Crosstown Connector interchange be undertaken, as it is vital to the transportation needs of Hillsborough County. It is further proposed and recommended that the justification contained herein provides the necessary data and evaluations for FDOT to recommend approval to the FHWA.

APPENDIX A

.....

.

:

EXISTING CONDITIONS (1988) CAPACITY ANALYSES

Greiner, Inc. OF 6 PROJ. NO. C1104.61 Connector Destown SHEET. DESCRIPTION EXISTING COMPUTED BY EKM DATE CHECKED BY GSR ADDATE 3/27/89 TRAFFIC T-4 AM PEAK_ Pamp 21st Streed EAST BOUND EXIT to 28k 3,543 4311 768 Table 5-2 For a 4-LN freeway treat as isolated ramps Lane Drop Table 5-1 applied to off ramp flow. Vp = 768/(0.95)(0.98) = 825 pcph (LOS B) Assuming even distribution $V_2 = V_3 = 3,543/2 = 1,772 \text{ vph} / (0.95)(0.98) = 1,903 \text{ pcph} (205 \text{ E})$ ିଟୋ - EASTBOUND ENTRANCE RAMP EAST OF 22 ND STREET T: = 3,543 (B2X.03) = 87 P; = 87/1340 = 0.065 / . 3,702 3543 4HV = VI+ D.065 (1.7-1) ß W = 0.956 VI = 136+0345VF - 0115Vr Figure 5-1 VI = 136 + 0.345 (3,543) - 0.115 (159) V1=1340voh $V_{p} = 1,340/(0.956 \times 0.95) = 1,475 pcph$ $V_2 = V_1 = 3,543 = 1,340$ 1 = 159/ (0.98 × 0.95) = 171 pcph 2,203 vich $= 3543(-18)(0.03)/2,203=0.009 \text{ MII} \quad \forall m = 1,475+171 = 1,646 \text{pcph}(205D)$ 3 - CONED

-

		SCR	P'	TIC	N	Ex	แร	UN TIN MP	16		eae ctro	FIC	, 			_ (SHE Com Che	PUI	TED	B	<u>۲ کا</u>	KM		_ D/	ATE			189	
]				İ.	1		1	1	•	-	↓ ↓			: · ·							 	;	
-	E	1											1			ىلاخ			.			• •			·		• • •	••••	·•
	<u> </u>	يا≹	n c	e	up	zh	123	<u>م</u>	<u> </u>	ar	np	_ دن	G	53	520	°′	-tr	ca	teo	LO	<u>s</u>	DY	J	S	late	.d.1	un.	1 P	· ····
		:			:				•	• • • •					<u>.</u>	-	·				1	1	•					i_	
	, !	-	2	7	22					:			1	~>	 2	<u>, 1</u> 5	5		•				•						• •••••
		-			<u> </u>		4			_	1	;	1		.) <u>1</u> 0			 	;									
			 ! 1	1	·	•				747		-	∔			· • • •			• • • • • • • •	÷	† ·		:				1		
				Fire	2]	5	-2		N	1 =	16	5	tc	.34	5\	İç .	+ C	5,5	20	٧r	: : 1								
	1	-							1			1	1			•	2)				1	47)							:
	! 	-							Ī	•	1	2]	1	i i		1				:		· ·		V ₂	= 3	3,70)2-	- 1, 72	2
			_						! 	, 				•		+				: :		; ;			9	1,9	75	vph	·
	1		•	 	Tį.	• 1	37	02	2 (.87	\mathcal{N}	02	D=	. 9	₿jf) =? 1	1/1	27	=	0.0	123	2	i •	P		טק,	2(.	18)(75	0_
		: 	• 	-										53)	<u>(۱</u>	7 -	D				ļ 		•	2		~	1,9	75	
Í								f Hy	;=	0.	96	4_∕		÷				1		•	!		1	<u> </u>		·		·	
		-		_							<u></u>	<u>⊳ =</u>	V1	=	72	<u>ايد 7</u>	2n/		2.91	5 4)	0.9 1	5)	0					Xon	1.7
	1								, 	<u>.</u>	$\frac{1}{2}$		=1,1	686	apc	sh(L	ام	5[<u> </u>	<u>/</u>	+	V			9	·	2-1	GZ
		+		+	-					1					<u> </u>	 			 		\vdash		V2					3×0. h(LC	
		•		-	_						÷	<u>.</u>		÷		1							1		-10	/ 1	<u>r-r</u>		
										.				∤ i		<u> <u> </u></u>			• • •	į	<u> </u>	; ;							
		i					i			1	1		 	;						• •									
		÷											-			1 1 1			· ·	•	1			•					-
		- 				 i		·		1	Ī	1		•	1			•••			11.	1		1		 			
				N.								1											3						
			!							1	· · ·	; ; ;					,	, .		: :		1				r 1			
			;			·		; 			:	!	ļ							: }:	ļ 		Į	1					
		: 												: 	: ;	-	: [:			; 	; ;					
				_	_					; 			1 1 · . 7 · · · · ·		• •							1		;	,				
	<u> </u>	<u> </u>	_									: +	 	: 						ļ	<u> ·</u> :			<u> </u>					
	1		- 									! !			 	<u> </u>	بے 	;		1	1 <u> </u> 	• •						ļ	
				<u> </u>						<u>.</u>		<u>.</u>	· · · · ·		<u> </u>		<u> </u>				<u> </u>		: 	1					
[-			•			<u>-</u>					ļ	, 		-	<u>.</u>				:	<u>.</u>		<u>.</u>						
`` 	; 	-			; ;					: ;		:	ļ ,	*	¦ 					1	<u> </u>	: 		<u></u>					
	-			-						+		;		-							 	1	l						
	1	1					Ì			<u> </u>			L			[<u> </u>	1	[!					

an the Star of the second

	un the state of the second		. , :
}	Greiner , Ir	IC.	
	JOB T-4/ CLOSSTON	NC	SHEET 3_ OF 6 PROJ. NO. 0104.61
. 1	DESCRIPTION EXISTIN AM PEAK PAMO	JE TRAFFIC	_ COMPUTED BY <u>EKM</u> DATE - CHECKED BY <u>6SR/HOF_</u> DATE <u>3/27/89</u>
	Fastbund		- CHECKED BT BSIC/APA DATE STOTIOT
୍ୱାତ୍ୟ	- EASTBOUND WEA	VING SECTION BETU	VEEN 40TH ST. AND SUTH ST. /COLUMBUS DR.
: 1		7 257	2,518
	3,155	3,352	
. 1		<u> </u>	
	7		63
	UNE LIVE		
	7 2,331	2,504	$V_{2} = 201 + 885 = 1,086 pcph$
	7187	anan a tanan 🔍 a ta 🏑 a ta ang ang ang ang ang ang ang ang ang an	$V = 2,504 \pm 201 \pm 885 \pm 11 = 3,601$ pcpl
3_	824		VR = 1,086/3,601 = 0.302
L	10 7027	885	N = 3
	(in vph)	(in peph)	
	Type A Wea	, j	
	U	50	
·	Sw=15+-	1+[(0.28)(1.302)2	$\frac{2(3,601/3)^{1.0}}{(560)^{0.9}} = 31.56 \text{ mp}}$
			(5,00) 1 (20SF)
	C _ 10 .	50	
		+ [(0.02)(1.302)+	°(3,601/3)°.88/(560)°67 = 45.10mp (LOSD)
-GN		ance East of 50	
			× Table 5-6
			$\overline{N_1} = 26.08 (0.67 \times 0.03) = 51$
	2,518 v		$2,701$ $B = 5\frac{1}{984} = 0.052$
<u>(</u>	183		$f_{HV} = 1 + (1.7 + 1)(0.052)$
			- HV= . 965
	Figure I.5-1	VI = 136 + 0.345 V	-0.1151/c
		$V_1 = 136 + 0.345(2$	
		V1= 984 Joh	
	V=2,518-984=1,534	ph VI = 984 10.965	(0.95) Vr= 183/098 (0.95)
	p 2,518(0.33)(0.03)		
	1,634		
	hw=/[++(p.016)(1.7-1)]	= 0.989 VM = 1,270 p	(LOSC)
	V= 1,534/(0.789 ×0.95)	= 1,633 pept (LOSD)	

•

.

,,, , , , ,

: 1

.

. .

برین بر سیر ۲

{

C |

SHEET 4_ OF 6_ PROJ. NO. _____ C1104.6 JOB J-4 / CROSSTOWN DESCRIPTION EXISTING TRAFFIC COMPUTED BY EKM DATE AM. PEPK Westborn Ramp Junctions CHECKED BY GSR/14 DATE 3/27/89 WESTBOUND EXIT to 50th Street -GJ Tr= 3274 (.80)(0.03)=79 $P_{T_1} = \frac{79}{1+79} = 0.053$ $f_{HV} = \frac{1}{1+(0.053)(1.7-1)}$ 2,919 3,274 filv = 0.9.64 V1 = 165 + 0.345 Vf + 0.520Vr Fig I.5-2 NI =165+0.345 (3,274.)40.520 (355) N1 = 1,479 upn / VD=VI = 1479 10.964×0.95) Vo = 1615 pcph (LOSC) $V_2 = 3,274 - 1,479 = 1,795$ yph $\dot{P}_{T_2} = 3_1 274 (0.20) (0.03) / 1,795 = 0.011 \\ f_{HV} = 1/17 [(0.011)(1.7-1)] = 0.992$ $V_2 = \frac{1}{795} / (0.992 \times 0.95) = 1,904 pcph(LOSE)$ 1 () 29:

SHEET 5 OF 6 PROJ. NO. ______ JOB <u>T-4/CROSSTONIN</u> DESCRIPTION Existing TRAFFIC COMPUTED BY EKM DATE AM PEAK P Westborn CHECKED BY SR/HOE DATE 3/27/89 5K MESTBOUND WEAVING SECTION BETWEEN SUTIST, KOLUMBUSDE AND 40071 ST. 352 3305 2919 3457 740 Vw= 359+773= 1,132 peph 18 334 7 359 * V = 19 + 359 + 773 + 2,777 = 3,928 pcph VR = 1,132/3,928 = 0.288 720 4 773 N = 3 1 = 740' 2,585 2,777 (in uph) (in poph) 50 Sw= 15+ 33.70 mph (LOSF) 1+[(0.28)(1.288)^{2.2}(3,928/3)^{1.0}/(740)^{0.9}] MESTEDUND Entrance Ramp niest of 40th street FSU T:= 3305(0.03)(0.82)=81 PT = B1/1209 = 0.067 / 3,891 fm = VI+ COOGED (17-D=0935 / 3305 VI = 136+ 0.345 VF -0115Vr Figure J.5-1 VI = 136 + 0345 (3805) - 0.115 (586) V1 = 1209 uph / VI = 1209/(0.955)(0.95) Ur=586/(.952.98) Nr=629pcph V1 = 1,233 ocoh V2= 3,305-1,209=2,096vph VM=VIIVE VN = 1333+629 $p_{12} = 3305(0.18)(0.03)/21096$ <u> Vim 1,962 paph (LDS E)</u> = 0.009 JHV = /[1+(0.009)(1.7-1)] = 0.994 $N_2 = 2,096/(0.994 \times 0.95) = 2,220(LOSF)$

•

Į.

. .

.

.

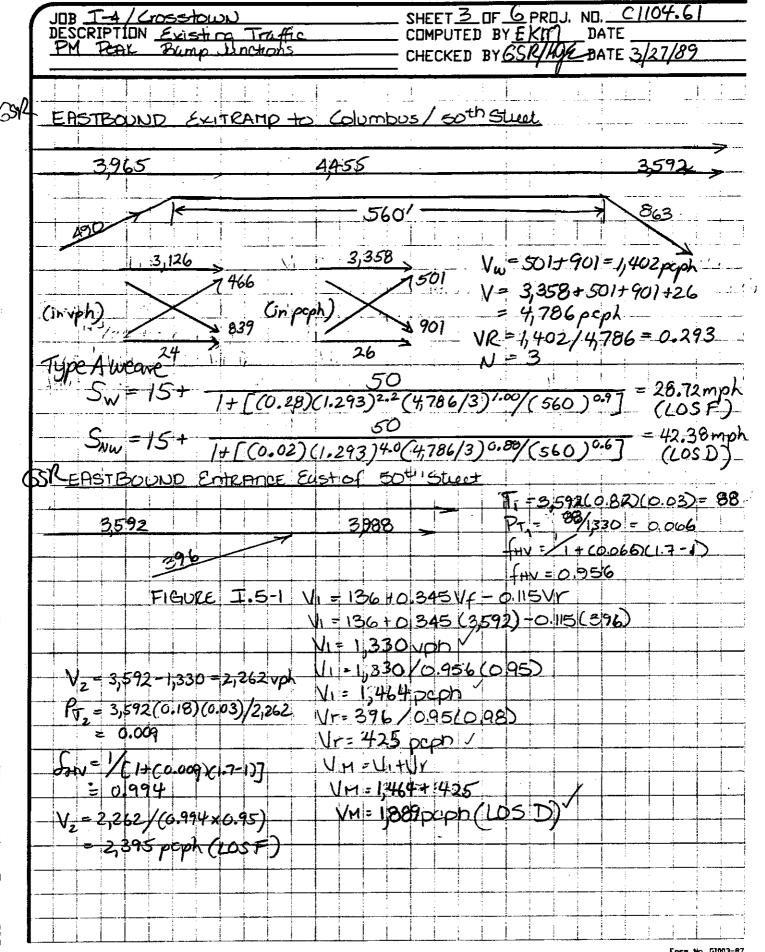
. .

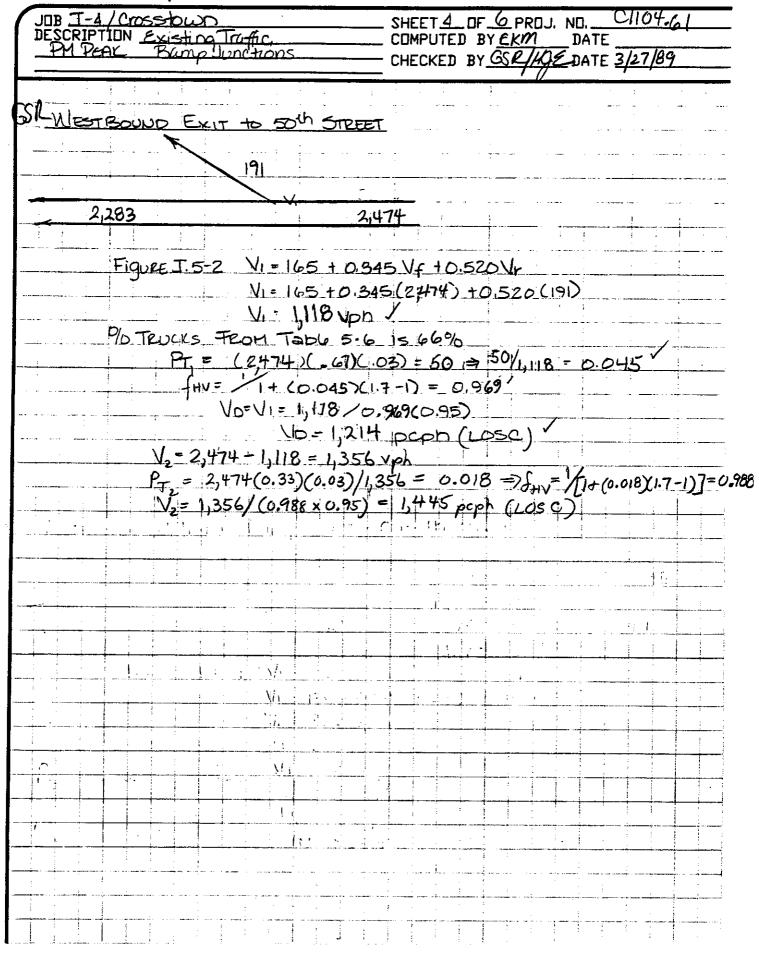
-

~~~~~~~~~~	Crossbard SHEET 6 OF	6 PROJ. NO. C/104.61
AM PERK.	Existing TRAFFIC COMPUTED E	YEKM DATE
Westb	and CHECKED BY	GSR/14/2 BATE 3/27/89
<u></u>		<u> </u>
MESTROUND	EXIT RAMP to 22ND STREET	
	nce between this 3 upstream	
15.6.	5 3200 : TREAT as independent	ramp
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
	R = 31	397 (0.82 X O. 03)= 96 ·
		1612 = 0.0:60
3690		1+ (0.060)(1.7-1) = 0.90
<		
+	ique I.5-2 V1=165+0.345Vf+0	
<u> </u>	$V_1 = 165 \pm 0.345 (3,891)$	1+0,520(201)
	N1=1612 ypn /	
V, = 3,891-16	12=2,279, ND=U1=1692/(0.960)(0	<u>96)</u>
		(LOSD)
	18(0.03)/2,279 UD = 1,768 pcph 1	
- JHV= 1/[13	(0.009)(1.7-1)] = 0.994	
$V_0 = 2.2$	$79/(0.994 \times 0.95) = 2,413 pcph(0001)$	
$V_0 = 2.2$	(0.009)(1.7-1)] = 0.974 79/(0.994×0.95) = 2,413 pcph (UOS F) > ENTRANCE RAMP WEST of E1 ⁵¹	Street
$V_0 = 2.2$	$79/(0.994 \times 0.95) = 2,413 pcph(0001)$	<u>Street</u>
$V_0 = 2.2$	$79/(0.994 \times 0.95) = 2,413 pcph(0001)$	<u>Street</u>
$V_0 = 2.2$	$79/(0.994 \times 0.95) = 2,413 pcph (0051)$ 5 ENTEADLE RAMP WEST OF E151	<u>Street</u>
$V_2 = 2,2$ <u>MESTBOUNE</u>	$79/(0.994 \times 0.95) = 2,413 pcph (0051) 5 = Entrance RAMP WEST of 21^{51}788$	<u>Street</u>
$V_0 = 2.2$	$79/(0.994 \times 0.95) = 2,413 pcph (0051)$ 5 ENTEADLE RAMP WEST OF E151	Street
$V_2 = 2,2$ <u>MESTBOUNE</u>	$79/(0.994 \times 0.95) = 2,413 pcph (0051) 5 = 2,413 pcph (0051)5 = 2,413 pcph (0051)5 = 2,413 pcph (0051)5 = 2,413 pcph (0051)79/(0.994 \times 0.95) = 2,413 pcph (0051)79/(0.994 \times 0.95) = 2,413 pcph (0051)79/(0.994 \times 0.95) = 2,413 pcph (0051)79/(0.994 \times 0.95) = 2,413 pcph (0051)79/(0.994 \times 0.95) = 2,413 pcph (0051)79/(0.994 \times 0.95) = 2,413 pcph (0051)79/(0.994 \times 0.95) = 2,413 pcph (0051)788788788$	<u>Street</u>
$V_2 = 2,2$ <u>MESTBOUNE</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (00051)}{5 Emterior (E)} = 2,413 pcph (00051)}$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$ $= 2,413 pcph (00051)$	<u>Street</u>
$V_2 = 2,2$ <u>MESTBOUNE</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 Emteriols Riame West of 21^{51}} \frac{788}{788} \frac{788}{\sqrt{10}} \frac{788}{\sqrt{10}} \frac{788}{\sqrt{10}}$	Street
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 Emteriols Brame West of 21^{51}} \frac{788}{788} \frac{788}{788} \frac{788}{788} \sqrt{200} \frac{788}{788} \sqrt{200} \frac{788}{788} \sqrt{200} \frac{788}{788} \sqrt{200} \frac{788}{788} \sqrt{200}$	Street (LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 Emterio (E Brand E Brand E E)} = 2,413 pcph (0051)$ $\frac{5}{2} Emterio (E Brand E E) = 2,413 pcph (0051)$ $\frac{5}{2} Emterio (E E) = 2,413 pcph (0051)$ $\frac{5}{2} Emterio (E E) = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$	Street (LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 Emteriols Riame West of 21^{51}} \frac{788}{788} \frac{788}{\sqrt{10}} \frac{788}{\sqrt{10}} \frac{788}{\sqrt{10}}$	Street (LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 Entrance RAMP WEST of 21^{51}} \frac{788}{788} \frac{788}{2.690} \frac{788}{10} \frac{788}{10} \times 10^{10} = 788 \times 10^{10} \frac{10}{10} = 788 \times 10^{10}$	Street (LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 Emterio (E Brand E Brand E E)} = 2,413 pcph (0051)$ $\frac{5}{2} Emterio (E Brand E E) = 2,413 pcph (0051)$ $\frac{5}{2} Emterio (E E) = 2,413 pcph (0051)$ $\frac{5}{2} Emterio (E E) = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$ $\frac{788}{788} = 2,413 pcph (0051)$	Street (LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5.6772ADCE PRAMP WEST of 2151}$ $\frac{788}{788}$ $\frac{788}{23.690}$ $\frac{117}{2} = 788 \text{ Vph}$ $\frac{117}{2} = 13690/2 = 1845 \text{ Vph}$ $\frac{117}{2} = 13 = 3690(0.03)/2 = 55$	Street (LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 \text{ ENTERNICE PRAMP WEST of 21^{51}} \frac{788}{788} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} 788$	(LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5.6772ADCE PRAMP WEST of 2151}$ $\frac{788}{788}$ $\frac{788}{23.690}$ $\frac{117}{2} = 788 \text{ Vph}$ $\frac{117}{2} = 13690/2 = 1845 \text{ Vph}$ $\frac{117}{2} = 13 = 3690(0.03)/2 = 55$	(LOSB)
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 \text{ pcph}(0051)}{5 \text{ ENTEADLE BAMP WEST of E1ST}}$ $\frac{788}{788}$ $\frac{788}{788}$ $\frac{788}{788} \text{ Vpn}$	(LOSB) 8
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 \text{ pcph}(0051)}{5 \text{ ENTEADLE BAMP WEST of E1ST}}$ $\frac{788}{788}$ $\frac{788}{788}$ $\frac{788}{788} \text{ Vpn}$	(LOSB) 8
V2= 2,2 <u>WESTBOUNE</u> <u>4478</u>	$\frac{79/(0.994 \times 0.95) = 2,413 pcph (0051)}{5 \text{ ENTERNICE PRAMP WEST of 21^{51}} \frac{788}{788} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{788} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Vph} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} \frac{788}{72} \text{ Pr} 788$	(LOSB) 8

· ·

•


]


JOB <u>T-4/Crosstown</u> DESCRIPTION <u>EXISTIC</u> PM PERK BAMP		SHEETOF_6_PROJ, NO. <u>C//04.61</u> COMPUTED BY <u>EKM</u> DATE CHECKED BY <u>SR/HOF</u> DATE <u>3/27/89</u>
35R EAST BOOND EXI	RAMP to BISt	Street
4445	·····	3878
		567
	Ur= 567 upt	C
· · · · · · · · · · · · · · · · · · ·		$98 \times 0.95) = 609 pcph(LOSA)$
	ngeven distribut	
· · · · · · · · · · · · · · · · · · ·	$_{2} = V_{3} = 3,878/2 =$	= 1,939 vph/(0.98×0.95) = 2,083 pcph
		(LO3É)
······	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	n an an an an an an an an an an an an an
3		
SI-EASTBOOND Entran	ice Kamp East	of 2215 Street
3878 V	4238	
760	- Figure J.5-1	$V_1 = 136 + 0.345 V_1 - 0.115 V_1$
		$V_1 = 136 + 0.345(3878) - 0.115(360)$ $N_1 = 1433.001$
Ti=3878 (.8e)(.03)=	95	V1 = 1433 /0.956(0.95)
PT = 95/1433 = 0.066		V1=1,578 pcph
$f_{HV} = / 1+ (0.066)(1)$ $f_{HV} = 0.956$		Vr= 360 (0.98)(0.95)
+HV - U, MV N		Vr = 387 pcpn Vm = 1,578 + 387
		VH = 1,965 pcph (LOS E)
		$V_2 = 3,878 - 1,433 = 2,445 \text{ vph}$ $P_{T_2} = 3878(0.18)(0.03)/2,445 = 0.009$
		$f_{12} = \frac{1}{2} \int (0.009)(1.7-1) = 0.994$
		$V_2 = 2,445 / (0.994 \times 0.95) = 2,589 pc/(20)$

· .

	DESCRIP	4/Ce TION PEAK	E	XIS:									she Com Che	PU	TEI	) B.	YE	<u>K</u> r	<u>n</u>	_ D	ATE				2	
GR	-EASTA			Exi	+ ++	>.4	40 ^t	<u> </u> 1 _	tu	ot						•			•							
	4,23		-					1			: 			39	5	<u>.</u>	T Ŧ	<u>آ ج</u> کر با	4,Z	<u>38</u>	602	32	62 105	)= 59_	104	ł.
					•	<u> </u>	_	_				· ····												, )		Γ
		_							+	> 2		+			<u> </u>			1	HV		<u>7.9</u>	60			: 	
		GURE	בי	. <u>s</u> -	-2								¥{ 4,23						72	<u> </u>	 		<b>†</b> ↓ ↓	 	 	1
			i   i				1		÷.					····				<u></u>	:	_/		· · · · · ·	 			
							Ú _T	2 <del>-</del> 2		=	71	09.	10						/			 		: : :		
	· · · · · · · · · · · · · · · · · · ·	 	••		 ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰			-	1				ph		<b>-</b>	1		<u>)</u>	•	:			• • • • • • • • • • • • • • • • • • • •	-		
					_								1=					• •		<b>-</b>	<u> </u>		<u>⊦</u> 			-
													(0.0											0.9	<del>}4</del> -	
	·						¦∕V +	2=	2,4	69/	(0	.99	4 ×	0.	75)		2,6	15	ocp	h (1	Los	F	)		: 	
			ينب	اح_م		1	<u> </u>	<u>n</u>				•	• 			} 	,	! !		1		: 	:			
			,				••••••		ļ		·							•	1		; ;				 - -	 ,
				_`			1	1				p			ļ				!., !.,						;	
						•	<u> </u>									مر ' 		i 4	μ. 				: 	: 		:
-		_			<u> </u>	•		<u>                                      </u>										;	;- 	: 		: :	•			÷
				-			+	<u> </u>	1 2		······	   I			175.EL			<u></u>	<u> </u>	<u></u>		;		•		:
		~						ļ.,		1	/			Э						1						
			· · ·			<u> </u>		<u></u>		<del>ار</del> بر		 								! 			 			
								$\lambda_i$	1 :	, <u>, ,                                </u>		1	Ņ					1								**
							.i <del> </del>				<u>.</u>	<u>.</u>							-						· ·	
										1	2 A	2		<u></u>	•	13	۲. 									
			17	(20)			 		2.4	÷																1
			17-	(*****							-														 ;	
	1 = 7		7.5	(20)																						
	1 = 7		17.5	(						•																
	1 = 7		17								-															—

n se bener en se se de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la s





SHEET 5 OF 6 PROJ. NO. CHOY.6 JOB <u>T-4</u> Crosstown DESCRIPTION EXISTING TRAFFIC msstown COMPUTED BY DATE PM PEAR Bamp Unitions ACE DATE 3/27/89 CHECKED BY GSR/ WESTBOUND EXIT RAMP TO 40th Street 55 887 144 3:026 3170 2283 740'  $V_{w} = 147 + 945 = 1,092 pcph$ 147. V = 8+147+945+2,305=3,405peph 1375 VR=1,092/3,405=0.320 880-N=32,305 (in peph) ん=: Type A Weare 34.75mph (LOSF)  $S_w = 15 \pm$ 1+[(0.28)(1.32)2.2(3,405/3),000/(740)0.7 = 47.00 mph (LOSD) SNW = 15+ 1+[(0.02)(1.32)4.0 (3,405/3) 0.89/(740 GR WESTBOUND Entrance Ramp west of 40th Sueet Tuble 5.6 T1= 3,026 (0.80)(0.03) = 73 PT= 73/108 = 0.066 3649 3,026 fiv = /1+ co.066>(1.7-1) = 0.956 FIGURE J.5-1 NI = 136 + 0.345 VF - 0.115 Vr V1-136+0.345(3,026)-0.115(623)  $V_2 = 3,026 - 1,108 = 1,918 \text{ up}$ [.] VI= 1,108 uph . VI= 1,108/0.956(0,95) PT= 3,026(0.20)(0.03)/1918  $U_1 = 1220 pcph$ = 0.009 Ur=623/098(0.95) JIV= 1/[1+ (0.009)(1.7-1)] Ur= 669 pcph = 0.994 UM = VI + Ur N2= 1,918/(0.994×0.95) VM=1,220+669 ; ;} VH=1889, pcph (LOSD) = 2,031 peph(LOSE) Form No. GI003-87

- ]

30000 E	$2  V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = V_1 = $	52 165 + 165 + ( 1,503 ( 1,503 /	<u>3649</u> 0.345 0.345 	Nf + C (3647)	PT, -	20/1503 /1+2	2.)(.03 = 0. 0,060)	060	) - C
	$2  \sqrt{1} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac$	52 165 + 165 + ( 1,503 ( 1,503 /	<u>3649</u> 0.345 0.345 	Nf + C (3647)	PT, -	20/1503 /1+2	= 0. 0,060)	060	) = 0
	$2  \sqrt{1} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac$	52 165 + 165 + ( 1,503 ( 1,503 /	<u>3649</u> 0.345 0.345 	Nf + C (3647)	PT, -	20/1503 /1+2	= 0. 0,060)	060	) = 0
	$2  \sqrt{1} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{1}} = \frac$	165 + 165 + ( 1503 ( 1,503 /	0.345 0.345 Jph (0.960)	Nf + C (3647)	PT, -	20/1503 /1+2	= 0. 0,060)	060	) <i>e 0</i>
	V1= V1= V1=	165 t ( 1,503 L 1,503 /	0.345 0.345 Jph (0.960)	Nf + C (3647)	ftlv -	<u>/</u> +2 lr	0,060)		) = 0
	V1= V1= V1=	165 t ( 1,503 L 1,503 /	0.345 0.345 Jph (0.960)	Nf + C (3643)	0.5201	lr	· · · · · · · · ·	)<1.7Ц	) = C
Juee I.5-	V1= V1= V1=	165 t ( 1,503 L 1,503 /	0.345( -ph (a.960)	Nf + C (3643)	0.5201	lr	· · · · · · · · ·		;
guee I.5.	V1= V1= V1=	165 t ( 1,503 L 1,503 /	0.345( -ph (a.960)	(3647)	0,520 0+0,52	lr 20(153	ð.		
	V1= V1= V1=	165 t ( 1,503 L 1,503 /	0.345( -ph (a.960)	(3647)	10.52	20(153	0		
	<u> </u>	1,503 L	-ph (0.960)						
	Vi =	1,503/	(0.960)						
i				10.95)	:	/			
······································		= 11649	N mm			1		· · · · · · · · · · · ·	· · · · ·
	4 · · ·			1 : 1		i	i'	· · ·	1
	$\vee_2$	= 3649-	- 1,503	= 2,14	t6vph				•• ••
	Pr =	3.6491	0,18)	0.03)/2	,146 =	0.009			<del>.</del>
									÷
	- dhv -	///	(0.009) [// 664		$\int = 0$	77	<u> </u>	~1	
	V2=	2,146/	10.774	~ 0.45	$\frac{1}{2}$	13 pcp	n(203)	F.)	
QUUD CAT	<u>liance. D</u>	amp	MEST		i 1	<u>xleot</u>		· · · ·	
				925	2			-	<u>+</u>
1.100				01107			!	······································	:
4420	1			3771				· · · · · · · · · · · · · · · · · · ·	<u>}</u>
1 1							;	······	; 
	. 1								<u>}</u>
	Vr								
	Vm	= 923	<u>2/(09</u>	15)( <u>0</u> .0	18)				
	Vw	<u>1 = 991</u>	pcph		OSE	2			:
	sumina	even	distri	biltion					1
		1							
	$V_z = 1$	$V_3 = 3,'$	497/2	= 1,749	1 uph/(	0.98×	0.95) =	1,879	ocph
								(LOS	E)
								-	
+							- <u> </u>	··	
				1				÷.	
								i	<u> </u>
	<u>44420</u>	PJ2= SHV= V2= CUND Enternace P 14420 Nr Vm Vm Vm Vm Vm	$P_{T_2} = 3,649($ $f_{HV} = \frac{1}{(1+1)^2}$ $V_2 = 2,146/$ $V_2 = 2,146/$	$P_{T_2} = 3,649(0.18)(0.18)(0.18)(0.18)(0.18)(0.18)(0.009)$ $V_2 = 2,146/(0.994)$	$P_{T_2} = 3,649(0.18)(0.03)/2$ $\int_{HV} = \frac{1}{(1+(0.009)(1.7-1))} V_2 = 2,146/(0.994 \times 6.95)$ $OUND Entersner Ramp WEST OF G 92.2  44420  V_T = 923 \text{ yph} V_T = 923 \text{ yph} V_m = 923/(0.95)(0.0) V_m = 991 \text{ pcph} (1Assuming even distribution$	$P_{T_2} = 3,649(0,18)(0.03)/2,146 = $ $S_{HV} = \frac{1}{(1+(0.009)(1.7-1)]} = 0.$ $V_2 = 2,146/(0.994 \times 6.95) = 2.2$ $QUND \text{ Cotensives Barrier MEST OF 21S1} = 923$ $44420 = 34497$ $44420 = 34497$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$ $V_{T} = 923 \text{ yph}$	2000 Éntrence. Pamp MEST OF 21 ⁵¹ Street 923 24420 Nr = 923 von Vm = 923/(0.95)(0.98) Vm = 991 pcph (LOS 3) Assuming even distribution	$P_{T_2} = 3,649(0,18)(0.03)/2,146 = 0.009$ $\int_{HV} = \frac{1}{(1+(0.009)(1.7-1)]} = 0.994$ $V_2 = 2,146/(0.994 \times 6.95) = 2,273 pcph(2.05)$ $QUND Cotenace Ramp WEST OF Steed 923 44420 34497 44420 34497 V_T = 923 \text{ yph} V_T = 923 \text{ yph} V_m = 923/(0.95)(0.98) V_m = 991 \text{ pcph} (1.053)$	$P_{T_{z}} = 3,649(0.18)(0.03)/2,146 = 0.009$ $\int_{HV} = \frac{1}{(1+(0.009)(1.7-1)]} = 0.994$ $V_{z} = 2,146/(0.994 \times 6.95) = 2,273 pcph(LOSF)$ $QUUD Cotenace Bamp WEST OF 2154 Steed -923 -44420 -923 -44420 -923 -44420 -923/(0.95)(0.98)$

			a II dan b	444			
	IMARY         REP           **********         ************************************	ORT ********** NI-4/21 OTHER GSR 4/4/89 A.M. P	ST/22ND S1 EAK HOUR	*****		**************************************	****
T T R	99 26 0	VOLUMES WB NB 154 643 33 171 14 96 0 0	45 : L 204 : T 199 :	г 12.0 т	WB 12.0	12.0 12.0	T 12.0 R 12.0 12.0
IE IF IF IF JB	(%) 0.00 0.00	(%)	ADJ PKG Y/N Nm N O	DJUSTMENT FA BUSES PHF Nb O 0.88 O 0.88 O 0.88 O 0.88 O 0.88		PED. BUT. Y/N min T N 20.5 N 20.5 N 20.5 N 17.5 N 17.5	3 3 3
JB JB JB		H-1 PH-; X X X X X X X	SIG ⊇ PH-3	NAL SETTINGS	PI LT		GTH = 120.0 PH-3 PH-4
IE IE IE	LANE GI L T L TR L TR L TR L TR L R	RP. V/C 0.578 0.144 0.700 0.111 0.974 0.213 0.167 0.720 0.505	G/C G. 117 G. 117 G. 150 G. 150 G. 450 G. 450 G. 183 G. 183 G. 183	EVEL OF SERV DELAY 41.2 30.8 42.5 28.5 44.3 13.0 31.4 34.2 23.1	ICE LOS E D E D E B D D C	APP. DELAY 39.1 39.1 34.8 29.0	APP.LOS D D D D
NT	ERSECTION	N: De	elay = 34	.i (sec/veh)	V/C =	5.647 LO	S = D

Ĺ

			· ·							
35.A -**	5 HCM: SIGN MARY REPORT *********** ERSECTION	******** I-4/21ST	****	******	·****	<del>`****</del> **	*****	*****	****	*****
INA IAT	A TYPE LYST E MENT	GSR 4/4/89 P.M. PEA		ONS (1988)	/FIL	.E NAME i	2122PE			
T T T T T T T T	EB WB	687 254 257		EB T 12.0 12.0 12.0 12.0 12.0 12.0	T TF	WB 12.0	T TR	NB 12.0	LT T R	SB 12.0 12.0 12.0 12.0 12.0 12.0
EB JF ( JI SE	0.00 0.00 0.00	(7) Y	DJ FKG	Nb 0 ( 0 ( 0 (	FHF	PEDS			ARR.	TYPE 3 3 3 3
JF	LT X TH X RT PD	₽Н-2 Х Х Х	816 PH-3	NAL SETTI PH-4	INGS NB SB	PI		LE LENG H-2 F X X X		
	LANE GRP. L T L TR L TR L TR LT R	V/C 0.821 0.322 0.829 0.234 1.021 0.410 0.242 0.657	L G/C 0.108 0.108 0.117 0.117 0.475 0.475 0.475 0.200 0.308	EVEL OF 9 DELA) 56.6 32.2 56.1 31.1 54.2 13.4 26.1 25.3	/ 5 2 1 1 2 2 4 1	CE LOS E D E D E B D D D	APP. D 49. 47. 36. 25.	5 4 3	APP.	E E D
I INT	ERSECTION:	Del	ay [°] = 36	.5 (sec/\	/eh)	V/C =	0.971	LOS	S = D	

-

.

MENT		.M. PE				-							
						5(198	8)/+1	LE 1 					
<b>C</b> D		UMES				<b>1</b> 1				EOMETRY			(3 <b>1</b> )
													SB
													12.
-		-	-										12.
				:							12.0		12.
											میں منٹے نمین ملح ومیل کردہ میں۔ منہ	**** *** *** *** ***	
GRADE	-	HV	AD.T	PKG						PED.	BUT.	APP.	TVE
								•	~~~				
							0.90		50				3
										N	25.8		3
													3
0.00	) 5	.00	Ν	0		0	0.90		50				3
LT TH	'H-1 Х	 РН-2	: F						PH	CYC	LE LENG		
										Х			
								PD					
		Х					SB						
		v									X.		
PD		^	د					PD			^		
·							SERV						
LANE G	RP.	V/C								APP. DI	ELAY	APP.	LOS
L							5	E		41.	5		Ε
L										38.	1	1	D
R													
										<b>34.</b> ;	Ê	]	D
											-	-	
										41.;	<b>=</b>	ł	E
	178 0 0 0 GRADE (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	178 291 0 0 0 61 0 20 GRADE (%) ( 0.00 5 0.00 5	178 291 286 0 0 391 0 61 120 0 20 0 GRADE HV (%) (%) 0.00 5.00 0.00 5.00 5.00 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 291 286 77 : L 0 0 391 677 : 0 61 120 300 : 0 20 0 20 : : ADJ GRADE HV ADJ PKG BU (%) (%) Y/N Nm i 0.00 5.00 N 0 0.00 5.00 N 0 0.00 5.00 N 0 0.00 5.00 N 0 SIGNAL PH-1 PH-2 PH-3 PH LT X TH RT X PD LT X TH RT X PD LT X TH RT X PD LT X TH RT X PD LT X TH RT X PD LT X TH RT 0.00 LEVE LANE GRP. V/C G/C L 0.712 0.167 L 0.802 0.242 R 0.127 0.242 L 0.817 0.233 TR 0.754 0.233 LT 0.975 0.258 R 0.808 0.258	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178 291 286 77 : L 12.0 L 0 0 391 677 : 12.0 R 0 61 120 300 : 12.0 0 20 0 20 : 12.0 : 12.0 C 20 0 20 : 12.0 : 12.0 ADJUSTMENT FAC GRADE HV ADJ PKG BUSES PHF (%) (%) Y/N Nm Nb 0.00 5.00 N 0 0 0.90 0.00 5.00 N 0 0 0.90 SIGNAL SETTINGS PH-1 PH-2 PH-3 PH-4 LT X NB TH RT X SB TH RT X SB TH RT X SB LEVEL OF SERVI LANE GRP. V/C G/C DELAY L 0.712 0.167 41.5 L 0.802 0.242 40.2 R 0.127 0.242 23.0 L 0.617 0.233 41.9 TR 0.754 0.233 30.1 LT 0.975 0.258 43.7 R 0.808 0.258 34.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•

.

n she bar na kana na mana kan bar na kasaran na mana kan bar na kasaran na mana kan bar na kasaran na mana ka

:7j

2

•

2

2

) 1. . . . .

	ERSECTION			OFF	Rami	PS/	40TH 9	STREET						
	LYST													
	E			ак н	IOUR									
COM	MENT	E)	(ISTI	IG CO	)ND I '	TIC	DNS (198	38)/FI	EN	AME 4	40PE			
		VOLL	JMES		:					GE	EDMETRY			
	EB 171	WB	NB	9	6B :		EB			WB		NB		SB
LT	171	78	385.	1:	0:	L	12.	0 L		12.0	L	12.0	LT	12.
тн	171 0 0	0	534	49	95 :		12.	O R		12.0	T	12.0	Т	12.
RT	0	66	380	5	38 :		12.	0		12.0	TR	12.0	к	12.
RR	0	20	0	ć	20 :		16.	v				12.0 12.0		al fac ff
					3		12.							12.
			- en en en en -		:		12.					12.0		
				<b></b> _			JUSTME						000	~~\/~
	GRADE	+	10	ADJ	PKG	E	JUSES	нн	H	EDS	PED.	BUT.	HKK.	Y H-
e- e.	(%)	(7	() 00	YZN N	NM O			0 92		50	TZIN Ni	MIN 1 25 A		3
	0.00		00	N N	Š		0	0.92		50	N	25. A		3
WB NE	0.00	5	00	IN N	ŏ		õ	0.92		50	N N	16.8		3
SB	(%) 0.00 0.00 0.00 0.00	5.	00	N	ŏ		ŏ	0.92		50	N	16.8		3
<b></b>	· <b></b>											LE LENG		120.1
	PI	4 1	PH-2	> r			PH-4			Fł	-1 F	/H-2 F	×H3	PH-
EB	LT							NB						
	TH								тн		Х			
	RT								RT		X			
	PD								PD					
WB	LT		Х					SB				X		
	тн								TH			X		
	RT		X						rt PD			х		
	PD													
					- ·-		EVEL OF			-			APP.	
<b></b>	LANE GI							_AY 5.5				DELAY 5		D ມ
EB	L L		0.588 0.381				35 36				30. 34.			D
WB	R		0.250		). 13			).2			U7.	~		
NB	n L		0.735					9.8			31.	8		D
			0.928					2.6						
SB	LT		0.85					3.6			32.	7		D
3D						3			D					

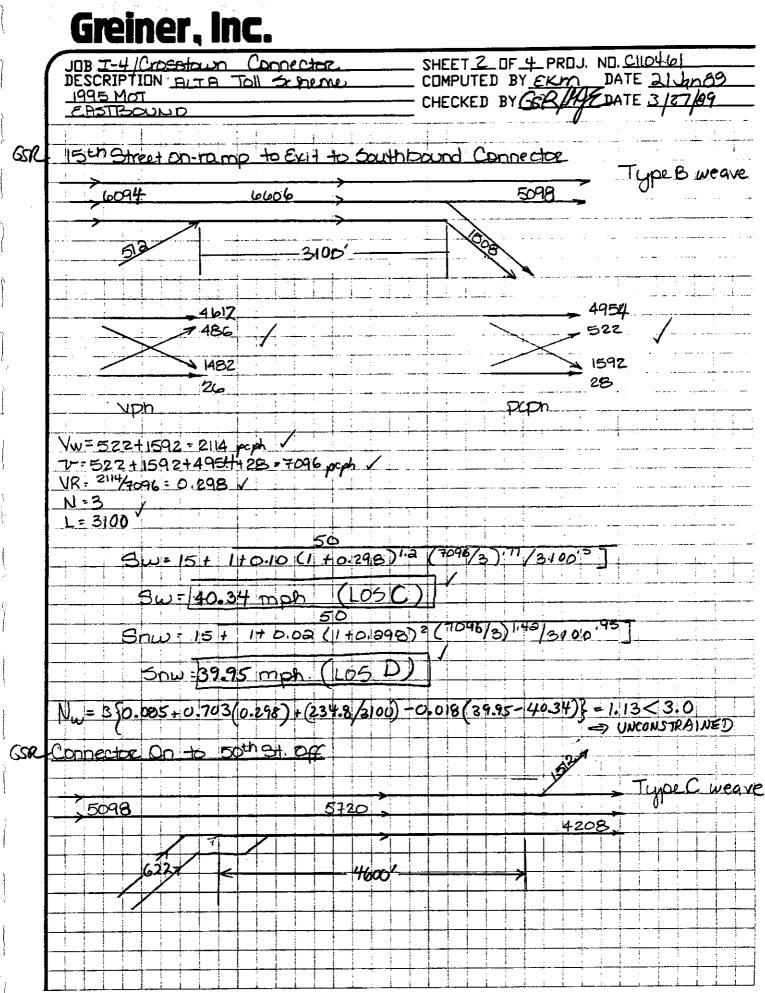
• • • •

·. ·

]

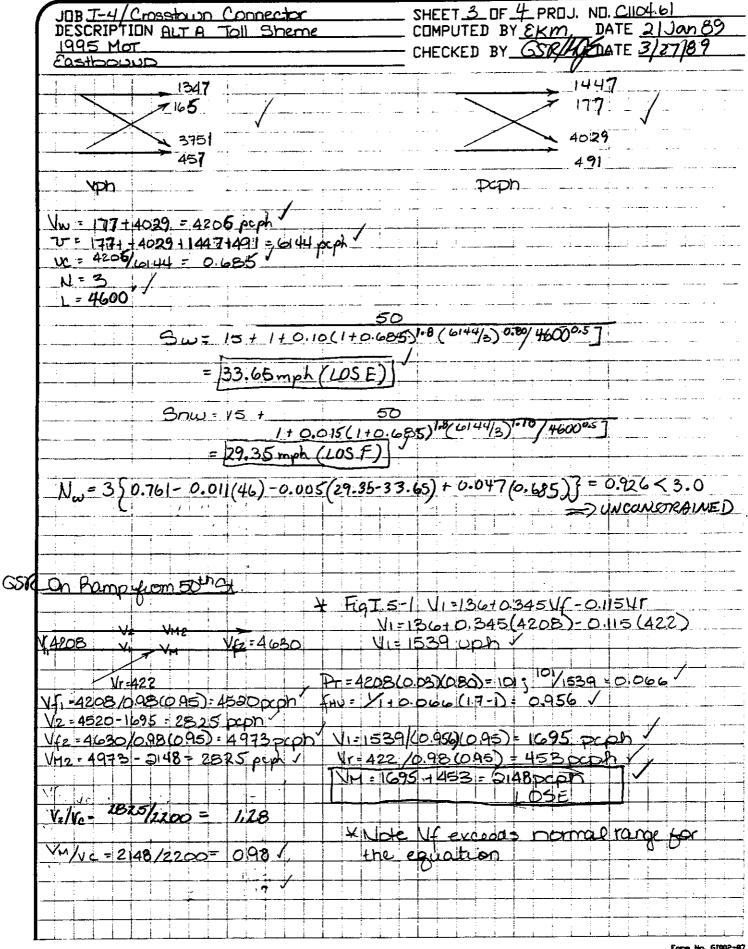
	85 HCM MMARY			LIZED	INT	ERSE	ECTI	ONS				~					
**	*****	***1	****	*****	<del>{**</del> *	****	<del>***</del>	*****	****	**	****	****	****	***	*****	*****	***1
IN AR	TERSEC [.] EA TYPI	TION F.	N C	OLUMBU	JS I	RIVE	E/50	TH ST	REET	· (U	.S.4	1)					
AN	ALYST.		G	SR													
	TE				-04		•										
	MMENT.							INS (198	38)/	FI	LEN		5065				
	د هنه جبب غده <del>جبر جده</del> من				·												
	EB		VOL WB	UMES				En					EOME	TRY			
LT	221		47	NB 260		SB : 28 :		EB 12.	0	L		WB 12.0	L		NB 12.0		SI
TH	250		306	738		53:		12.		Т		12.0			12.0	L T	18 18
RT	.0	1	36	26		37 :		12.		Ť		12.0			12.0	Ť	12
RR	0		20	Ō		20 :		12.		R		12.0		R	12.0	R	12
						1		12.				12.0			12.0		18
	یر چین شنا خلو دو جد ب					:		12 <b>.</b>	···			12.0			12.0		12
							AD	JUSTME	NT I	FAC	TOR	S					
	GRA					PKG		USES	P	HF	P	EDS			BUT.	ARR.	ΤY
EB	(*	•) 00		%) .00	Y/N N	Nm O		Nb O	~	ne		FA	Y71		min T		
WB		00		. 00	N	0		ŏ	0.1			50 50	N N		31.8 31.8		3 3
NB		00		00	N	ŏ		ŏ	0.1			50	N		28.8		ა ვ
SB	0.	00	5.	00	Ν	0		0	0.1			50	N		28.8		3
						 C	 T (26//	AL SET									
		PH	-1	PH-2	I	РН−З			1 1 140	لنه ل		PI	H-1		E LENG -2 F	9H-3	PH
EB	LT		Х	X					NE	3	LT		X				
	TH RT			x		X					TH				х		
	PD										RT				x		
WB	LT		х			•			SE		PD LT		x				
	TH					Х			01		ТН		Ŷ		x		
	RT					X					RT				X		
	PD			•							PD						
							LE	EL OF	SEF	<u>ا ۱</u> ۷۶	CE						
<u></u>	LANE	GRF		V/C		6/C		DEL	AY		LOS	6	APP.			APP.	LOS
EB	L T			0.483		). 175		34			D		3	so. 9		1	D
WB	1			0.649 0.306		).258 ).108		27. 37.			D D		~			-	_
	T			0.562		). 198		29.			D		C	27.1		1	D
	R			0.249		. 367		17			č						
NB	L	_		0.568	C	. 175	วิ่	35.	5		D		, a	6.5		1	D
	ТІ	R		0.754		. 358		23.			C	-				-	
SB	L			0.516		175		35.			D		2	3.2		ſ	2
	ŧ			0.838	. U	. 356	)	25,	. 7		D						

ń


### APPENDIX B

### OPENING YEAR (1995) PHASE I CAPACITY ANALYSES

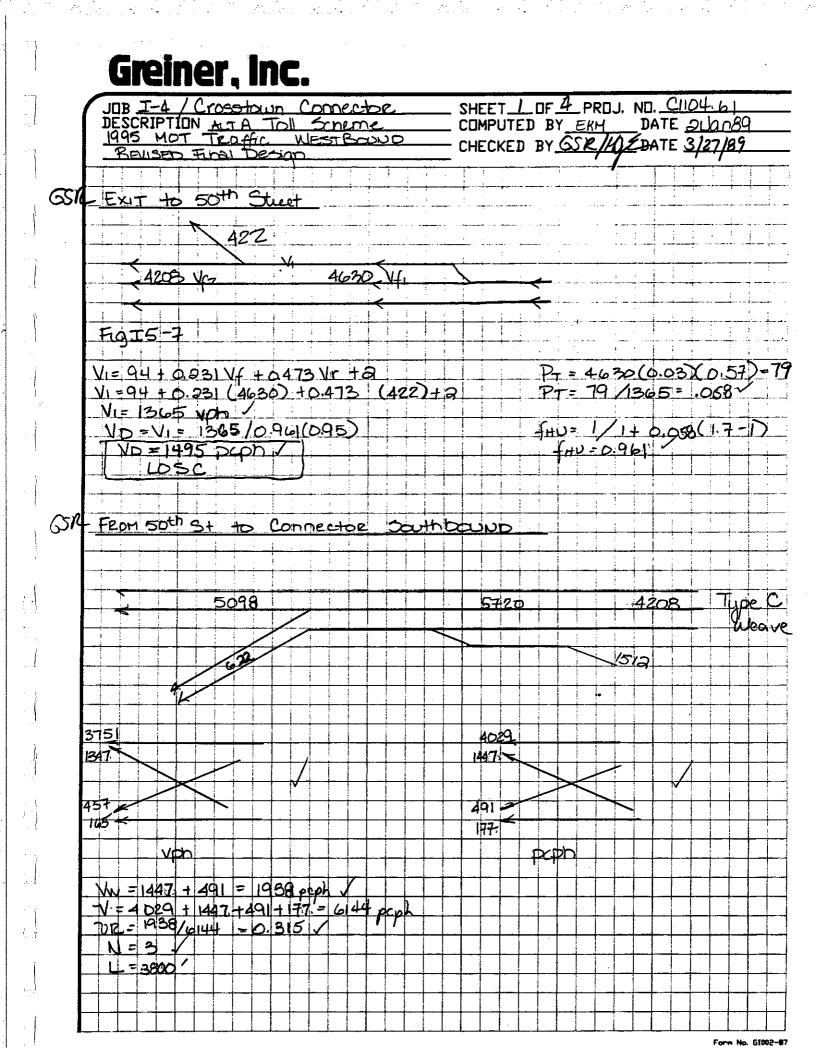
JOB I-4	Crosstown C	onnector		SHEET1	IF <u>4</u> PRDJ.	ND. C1104.61
DESCRIPT	ION ALTA TO	oll Schome	·	COMPUTED		DATE 16De
	DT TRAFFIC		. <u> </u>	CHECKED B	Y GSR/10	DATE 3/27
EASTRA			<u> </u>			
- Exit Ro	2mp to 2131/	2200 Stree	<u>22 : .</u>	· · · · ·		
	<del>, V3</del>		* F0	1.5-7 NI-9	4+0.231Vf+	0.473 Vr + 2151
NF 6864	12	¥	26094	V1=94+0	231(6864)+	10.473(770) -
				V1=2046	opn.	
	Vr=770		D		165	
1	<u>Nr=110</u>		FT= 6067	0.00/0.80		2046 = 0.08 47
10-1-01-1-1		78			1-1)=0.9	T.(
	0.9B(0.95) 7= 8-22.74 - 50		Marthe	PDAL 110	9471095	+ 22774 PCP
V/C== (-D)21	4/0.98(095) - 0	5) DCPI		2040/10		LOSE
46 007		ez40pp				
NS. Kin +	5099/4200 =	1.2%	· VIII	Vf exceo	de more	al rome
NI/UC =	22.74/2200-	103				and the spen
			The second second	equati		
NG KIC =	6546/6300=	1.04		;		
	The second				·····	++
· · · ·	Romp from		Vg		To colouis	ite per la
Entrance 6864	Romp from	15th Star V2	Vg	: 660 (e 🗢 .	· <u> </u>	35 this A
6864	+ <u>+</u> , 6094		<u>Vg</u> V₂.Vfz=	6606	, YC	JS this here
· · · ·	- <u>+</u> , 6094	V2 VI	V3- 	<b>6606</b>	· · ·/C wes 21+0.244 V	35 this A
6864	- <u>+</u> , 6094		V3- 	<b>6606</b>	, YC	JS this here
6864	- <u>+</u> , 6094	V2 VI	Vg Vb:Vfz= 	I.5-6 V1=- 640*	21+0.244 N /Dd = 5	05_7+815 R VING-0007 (-0.005/101
<u>6864</u> Nu≠7		V2 V1 V1=5)	V2.VF2= 	1.5-6 V1=-1 640 121+0.24	V/C 21+0.244 V 1/DH = 5 4 (6094)-	JS this here
<u>6864</u> Nu≠7	10 AB(0:95)= 651	V2 VI Vr=5)	V2.VF2= 	I.5-6 V1=- 640*	V/C 21+0.244 V 1/DH = 5 4 (6094)-	05_7+815 R VING-0007 (-0.005/101
<u>6864</u> NU=7  {1=6094/10  2+V3=6541	-1, 6094 20 20 20 20 20 20 20 20 20 20 20 20 20	V2 VI VI VI VI VI VI VI VI VI VI VI VI VI	V3 	1.5-6 V1=-1 640 121+0.24 1309Upn	21+0.244 V 21+0.244 V 101 = 5 4 (6094) -	0.085(770)
6864 NU=7 NU=7 Nf1=6094/10 IZ+V3=6541 Nf2=660161	-1476 = 507	V2 VI VI VI VI VI VI VI VI VI VI VI VI VI	V2:VF2= 	:6606 I.5-6 VI=-1 640 121+0.24 13000pn	21+0.244 21+0.244 21+0.244 201 = 5 4 (6094) -	0.085(770) +
6864 NU=7 NU=7 Nf1=6094/10 IZ+V3=6541 Nf2=660161	-1, 6094 20 20 20 20 20 20 20 20 20 20 20 20 20	V2 VI VI VI VI VI VI VI VI VI VI VI VI VI	$V_3$ $V_1$ : $V_1^2$ $V_1 = -$ $V_1 = -$	1.5-6 VI=-1 640 121+0.24 13000pn 13000pn	$\sqrt{2}$ 21+0.244 V $\sqrt{2}4 = 5$ 41(6094) - 1 $\sqrt{2}50 - 146$ 1.7 - 1 = 0	0.085(770) 1 146/1300= 0 1217 V
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=66016/ Nfz=66016/	-1, 6094 70 AB(0,95)= 654 6-1476=507 D98(0.95): 70 D96-2026=5	Vr=5) Vr=5) Ur=5) Upcpn Opcpn Squecpn Squecpn	$V_3$ $V_1$ : $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$ $V_1$	1.5-6 VI=-1 640 121+0.24 13000pn 94(0.03)(1 1300/0.9	$\sqrt{2}$ 21+0.244 V $\sqrt{24} = 5$ 4(6094) = 1 4(6094) = 1	0.085(770) + 146/1300= 0 1476 pcpt
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=66016/ Nfz=66016/	- <u>1,6094</u> 20 10 10 1476 = 507 1098(0.95): 70 096-2026 = 5	V2 VI VI VI VI VI VI VI VI VI VI VI VI VI	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=66016/ Nfz=66016/	-1, 6094 70 AB(0,95)= 654 6-1476=507 D98(0.95): 70 D96-2026=5	Vr=5) Vr=5) Ur=5) Upcpn Opcpn Squecpn Squecpn	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=-1 640 121+0.24 13000pn 94(0.03)(1 1300/0.9	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 Nu=7 Nu=7 Iz+V3=6541 Nfz=6541 Nfz=6006/ Vm2+Vm3=7 Nf1/Vc=6	- <u>1</u> , 6094 - - - - - - - - - - - - -	Vr=5) Vr=5) Hepcon Opcon Saleocon Saleocon Saleocon Saleocon	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 Nu=7 Nu=7 Iz+V3=6541 Nfz=6541 Nfz=6006/ Vm2+Vm3=7 Nf1/Vc=6	-1, 6094 70 AB(0,95)= 654 6-1476=507 D98(0.95): 70 D96-2026=5	Vr=5) Vr=5) Ur=5) Upcpn Opcpn Squecpn Squecpn	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	$\frac{-1}{6094}$ $\frac{-1}{10}$ $\frac{-1}{10}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-507}{-507}$ $$	V2 VI VI VI VI D VI D VI D C D C D C D C D C D C D C D C D C D	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	- <u>1</u> , 6094 - - - - - - - - - - - - -	Vr=5) Vr=5) Hepcon Opcon Saleocon Saleocon Saleocon Saleocon	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	$\frac{-1}{6094}$ $\frac{-1}{10}$ $\frac{-1}{10}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-507}{-507}$ $$	V2 VI VI VI VI D VI D VI D C D C D C D C D C D C D C D C D C D	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	$\frac{-1}{6094}$ $\frac{-1}{10}$ $\frac{-1}{10}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-1476}{-507}$ $\frac{-507}{-507}$ $$	V2 VI VI VI VI D VI D VI D C D C D C D C D C D C D C D C D C D	$\frac{V_{2}}{V_{1}} = \frac{V_{2}}{V_{1}} = \frac{V_{1}}{V_{1}}$ $\frac{V_{1}}{V_{1}} = \frac{V_{1}}{V_{1}} = \frac{V_{1}}{V$	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ V $\sqrt{24} = 5$ 41(6094) - 1 21(6094)  0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon	
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	$\frac{1}{10} \frac{10094}{10}$ $\frac{1}{10} \frac{1}{10} \frac{1}$	V2 VI VI VI VI D VI D VI D C D C D D D D D D D D D D D D D D D	V2: VF2= 	$1.5 - 6 V_{12} - 1$ 640% 121 + 0.24 1300,07 74.0.03X(1) 1300,0.9 512,0.98X 1476,152	$\sqrt{2}$ $21 \pm 0.244$ N $\sqrt{24} = 5$ 41(6094) - 1 21(0.95) = 0 27(0.95) = 0 27(0.95) = 50 20 = 2026	0.085(770) 146/1300= 0 127 / 1476 pcpt 2000
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	$\frac{1}{10} \frac{10094}{10}$ $\frac{1}{10} \frac{1}{10} \frac{1}$	V2 VI VI VI VI D VI D VI D C D C D C D C D C D C D C D C D C D	V2: VF2= 	1.5-6 VI=- 640 121+0.24 13000pn 13000pn 1300/0.9 512/0.98	$\sqrt{2}$ $21 \pm 0.244$ N $\sqrt{24} = 5$ 41(6094) - 1 21(0.95) = 0 27(0.95) = 0 27(0.95) = 50 20 = 2026	0.085(770) 1 146/1300= 0 127 V 1476 pcpt Dcon
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	$\frac{1}{10} \frac{10094}{10}$ $\frac{1}{10} \frac{1}{10} \frac{1}$	V2 VI VI VI VI D VI D VI D C D C D D D D D D D D D D D D D D D	V2: VF2= 	$1.5 - 6 V_{12} - 1$ 640% 121 + 0.24 1300,07 74.0.03X(1) 1300,0.9 512,0.98X 1476,152	$\sqrt{2}$ $21 \pm 0.244$ N $\sqrt{24} = 5$ 41(6094) - 1 21(0.95) = 0 27(0.95) = 0 27(0.95) = 50 20 = 2026	0.085(770) 146/1300= 0 127 / 1476 pcpt 2000
6864 NU=7 NU=7 Nf1=6094/10 Iz+V3=6541 Nfz=660161 Vnz+Vn3=7 Nf1/Vc=6 Vn2+Vn3=7	$\frac{1}{10} \frac{10094}{10}$ $\frac{1}{10} \frac{1}{10} \frac{1}$	V2 VI VI VI VI D VI D VI D C D C D D D D D D D D D D D D D D D	V2: VF2= 	$1.5 - 6 V_{12} - 1$ 640% 121 + 0.24 1300,07 74.0.03X(1) 1300,0.9 512,0.98X 1476,152	$\sqrt{2}$ $21 \pm 0.244$ N $\sqrt{24} = 5$ 41(6094) - 1 21(0.95) = 0 27(0.95) = 0 27(0.95) = 50 20 = 2026	0.085(770) 146/1300= 0 127 / 1476 pcpt 2000


. .

Form No. 61002-87



Form No. 61002-87


Greiner, Inc.

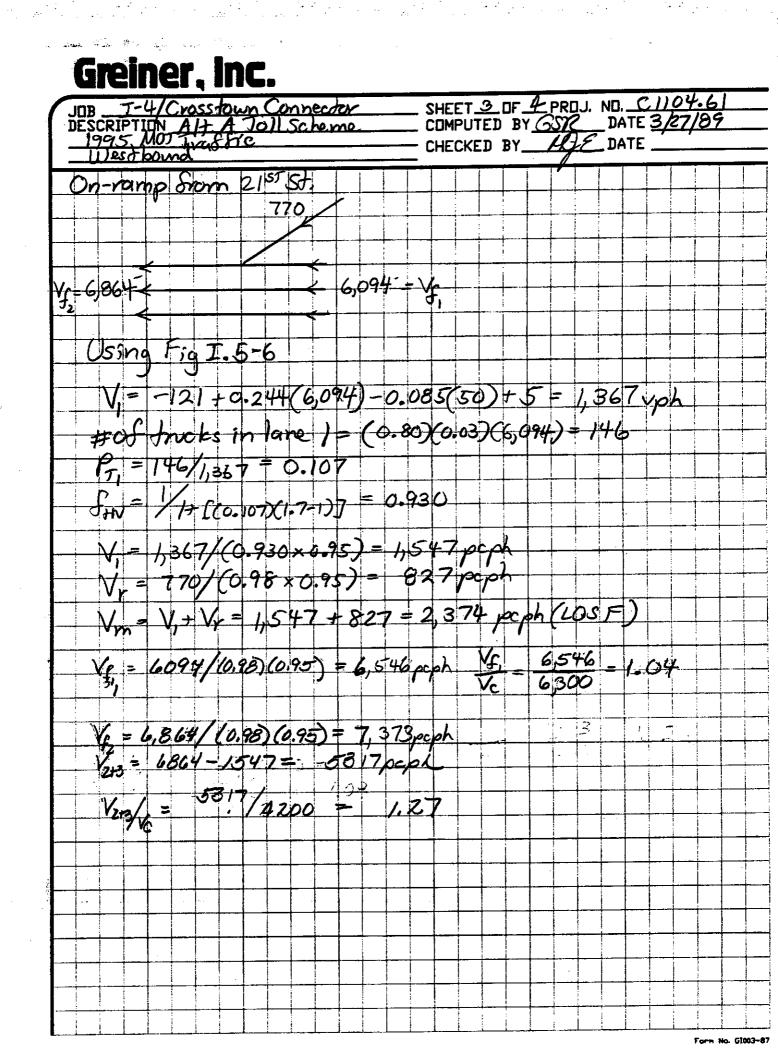


Form No. 61002

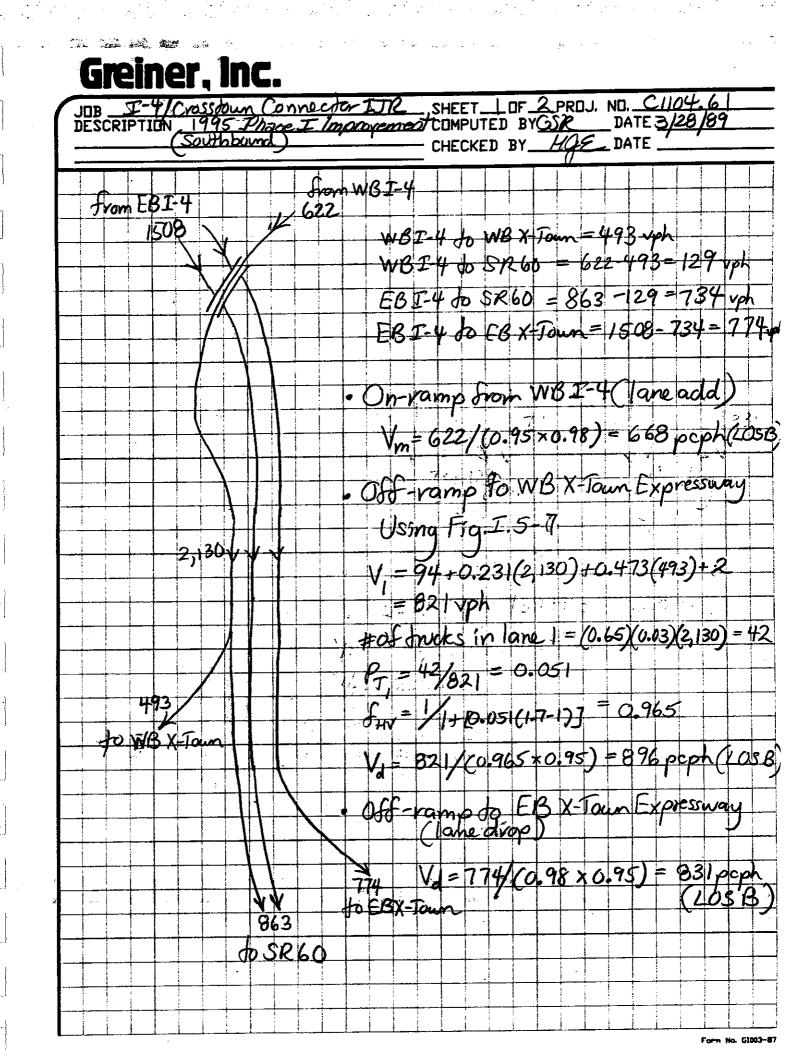
**Greiner**, Inc.

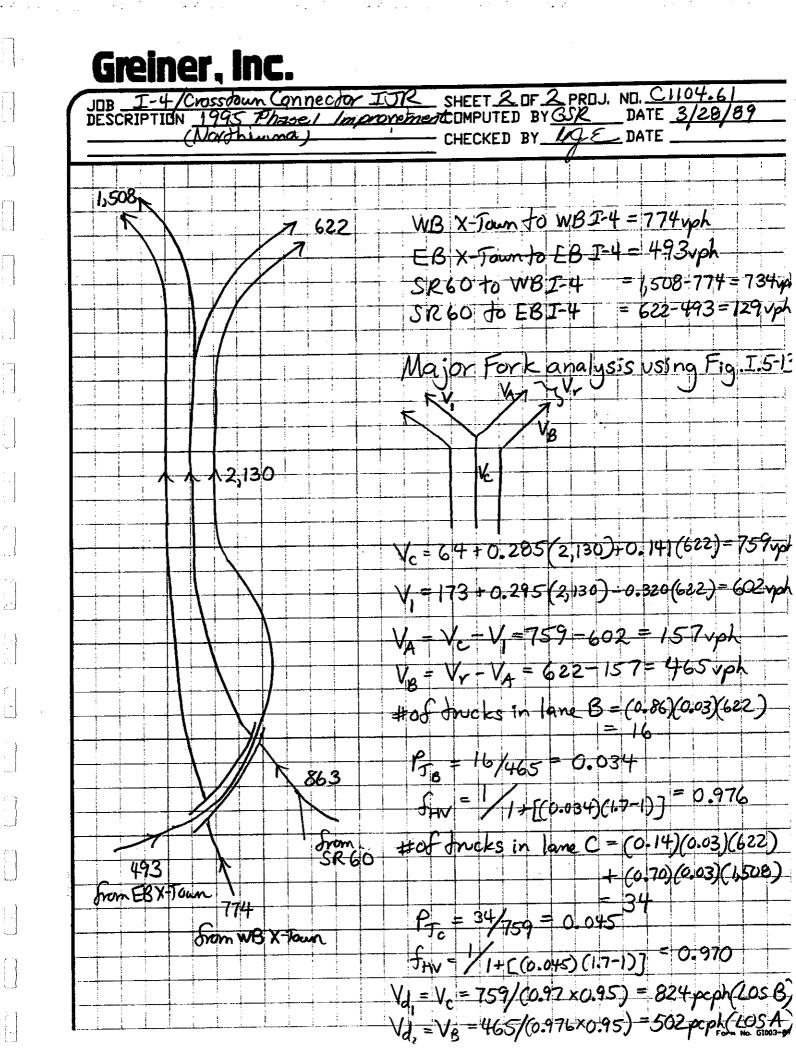
SHEET 4 OF 4 PROJ. NO. CIO4.61 JOBJ-4/Crosstawn Connector DESCRIPTION ALT A TOIL Scheme) 1995 MOT TRAFFIC DATE COMPUTED BY CHECKED BY GSR/HOEDATE _3/27/89 Pastbourd Basic Theaway Segments. MICST OF OF tO DIST/00ND 6514 Vf=6864 Upn / Vf-6864 10.95(0.98) Vf/vc= 7373 = 1.17 Vf=7373 pcpn 6W 6300 LOSE West of envance from 15th ST GSK NF- 6094 10.95 (0.98) NF= 6094 UDD -1/ f- 6546 6LN Freeway NF/NC = 6546 - 1.04 LD5 6300 GSR to South connector EAST OF exit 1 Nf=5098 1098 (0.95) Vf = 5098 upn 441 Freeu 1/f= 5476 pcpn VF/VC= 5476- 1.30 4200 USF GSREAST OF EXIT to 50th BT VF= 4208/(0.98)(0.95) VF= 4208 uph - 4520 = 10B NF=4520 pcph 441 Freeway 4200 GREAST OF ON from SUTIST VF=46300pm NF=4620/019B(0.95) = 4973 pcph ALN FLEELING NE/VC = 4973/4200 = 1.18 Form No. 61002

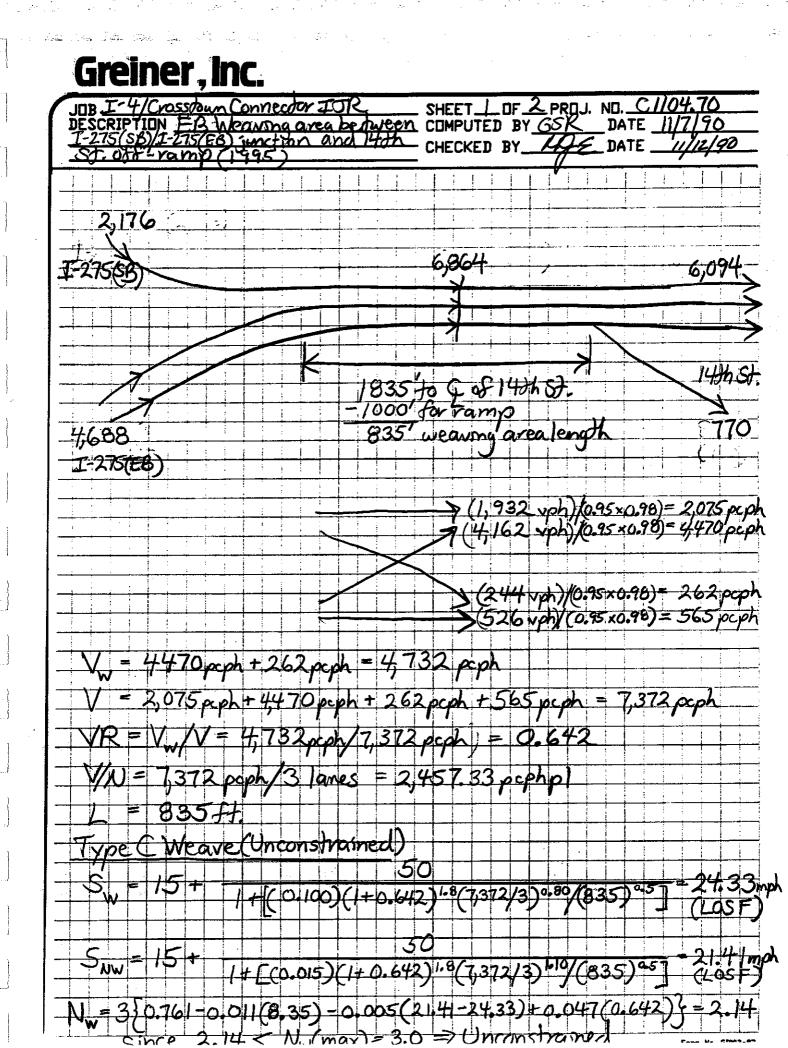



# <u>Greiner, Inc.</u>

. . . .


· (	JOB J-4	1005	stou	n	Co	nne	to	2.			_ S	SHE	EET	2	_0	F <b>4</b>	<u> </u>	PRD	J,	NĽ	1. <u>C</u>	_บง	<u>74</u> .	<u>61</u>		<u>-</u>	
	DESCRIPTI	<u>10N1</u>	∃- <u>T</u> _	<u> </u>	Tol		the	m			_ C		1PL	JTE	D	BY_	ļ	<u>-Kr</u>	$\hat{\mathcal{M}}$	D	AT	£ _	<u>21</u>	<u>b</u>	<u>w</u>	1	
	1995 Mor					ziòo	20	ρ_			- 0	CHE	ЕСК	ΚED	B	Y_	G	<u>SR</u>	Ð	D	AT	ڪ E	<u>3/2</u>	2.74	<u>189</u>	<u>7</u>	
	REUISED	<u>&gt; 410</u>	<u>a</u>	2550							-		,	<del>, ,</del>				_/	1		i				1	í	
								$\mathcal{D}$									1	-			_		! 		_	i — - I	1
ſ	3.0		151	F 7	+	0.10	(1	ΗÓ	218	54	8 (	6	144	1/3	5.	10 /	36	00	.5	7	1						<u>.</u>
							Ī			1	/				-	1			:			-		:			:
-	a.,	= ر	27	90-		h	$\overline{D}$	5	ີກົ				1		· · · · · · · · · · · · · · · · · · ·			;			1	1	1				-
· -			312	191	<u>r</u> ip	<u>u</u>	ť								<u></u>	-†-				÷	1		<b></b>				•
-					+		<u> </u>							•		-+-		··	1	<del></del>							 ۱
	51	<u>w =</u>		<u>+</u>			:			50		-		-111	47	<u> 1</u>	10	1			_	-		•••••	<u>.</u>		<u> </u>
					1	+	<u> 2.0</u>	157	<u> </u>	0.3	15	)/.0	<u> </u>		73	) [		/30	ØC	)'•<	?	J	÷		╞┈┤	L	; 
				·	1		┶┍┙		<u> </u>	<b>h</b> _1					<u> </u>			_	1	<u> </u>		1	<u>  </u>	<u>.</u>			L
	9	nw	- 33	. 19	m	SP.	(1	_0	SiE					! : •	, Line	$\mathbb{L}$	! 			i 				!			
	Wn=3 {		4.0	1/2	6)	00	5.0	12	2 9	137	7.9	0)	)+1	0.	04	7/0	) 3	15)	7	÷	1.1	4	K	3.	0		l
, <b>1</b> -	Na Dil	1.161	-0.01	Hta	ッナー	-6-4										Y	ŗ	: 0	<u>J</u>		U	vica	ŴS	70	AIN	₩ÊΓ	)
$\overline{\mathbf{w}}$	NOETHBO		h				1		15	b		-		25									1				عر ا
G82-	NOK IH DO		<u></u>	1111	الساب	28	1	-	<u>10</u>	+				H-		═┼	1		1		<del>† .</del>		5	i			j
		K	5				+			<del>;</del>					-+		+		+	+		SC	Þ				) 
)			52				+9	2.5	oo'	┼═╡			<u> </u>			-			<b></b>	¥	1-		+	$\overline{o}$			
				$\rightarrow$													1				μ <b>1</b>	49	pe	C	рų	<u>e</u>	2
	<u> </u>	<u>694</u>								66	0	6							1	{			4.	4			L
					1														ļ			50	98	<u>}</u> `			
					4															i	İ	1					:
	126_				i							28			Ì			-						1			:
Υ International Action							1												;	-	1	1	17				2
· -	486						+					52	2	1	$\neg$		$\mathbf{\mathbf{z}}$	+	i	-	+		7	1			
	N	$\times$		₩			÷			+					$\rightarrow$	≭	-			+	+	$\forall$	1				<u> </u>
i 🖡 –	1482	$\sim$										2	72	-72	$\land$		$\rightarrow$	$\leftarrow$		4	┢		+				
	4612									·				$\mathbf{K}$					-	+	-	+	+				ŀ
í L	NTA VITA										4	95	7		24	21			_		₋	ļ	ļ				i †
					!														<u> </u>		<u> </u>						
	Vw = 522	+159	12 = 1	214	bc.	h						·				Ì				_		1	ĺ				1
(	T = 28 -VE - 21	+57	2-10	97+	rug	54 -	10	76	ad												]						
, –	-10-21	14/_			19	2 1	1	**	F.P.										1	1			1				Γ
			270	<u> </u>	9.71	2		-									+		<u> </u>		1-	ł	+	1			
) 	L = 23									+					+	+	-	1	┼─	+	+		+				-
. <b> </b>	N=3						$\left  \right $						$\left  \right $	$\vdash$	$\rightarrow$		-		+	+	+		+	-			┢
li									57						04	<del>, k</del>	+			-	╉╤═	-	_			<b> </b>	-
	B	<u>u =</u>	15	+	4	<u>+p</u> .	0	<u>(</u>	1+0.	<i>6</i> 98	97	.a		14	- 00	/2)	1	' <b>/</b> d	3	00	12	₽	_	<u> </u>			Ļ
																		-	_			ļ	-				<b> </b>
		Sw	= 3	8.4	ť8 -	nor		'1	OB_	$\square$		Ú							_					1			
-/				1		-					イ					T											
		3nu	7	15.	4					50									T	1	1	Τ	T	1		Γ	
`} <mark>-</mark>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≤┤─┤	<u> </u>	4-4	1 1	6	~				00	<b>B</b> >		7-10	<i>Я</i> 6/	2	74	\$	1-2	4~	7.	95	17	-		Γ
. –	┼╸╎╸┤╶┼┥		<u>14)-</u>	21	41		٣		<u>a K</u>	<b>Τ</b> (	<u>م. ر</u>	~7	<b>P/</b>		<del>ن</del> ا	-1	٩.	+	+		10	Υ	+	╆┹╴	$\left[ - \right]$		ŀ
- H-	╅╍╋╍╂╶┠╾╂	-Pf		م <u>ان</u>	•	<u>,</u>	¥ _						<u> </u> ,		┝╾┥	-+-	╉				+	+	+	+	<u>+</u>		⊢
	┼╍┟╸┟╶╽			_		(	Ļđ	<u>ך י</u>		1 +	ř-	i -					_	+	╀		┨	+	+	+	┟──┤		┝
					$\downarrow$									$\square$			-		-		<b>.</b>		+		┟┈┥	Ц	L
		2.025	+0.7	03/1	0.2	18]4	1	34	8/2	30	0)		þ.	<u>p)</u> ŧ	3/3	8.4	8-	- 36	.0	4)	<u>[</u>		1,0	6-		<u>•• (</u>	2
	N. TYYU		1 1	-10		1	1		1						N	ľ					1		100	10	$\mathbf{h}$	-)A	13
	$N_{\mu} = 3$				-j I	1	1 1			'	ł		L 1						_			1/1	<u>u u</u>	VY.	Шн		÷
	Nw 390				+			-												+-'	7	V	ra 	VX,	44.6		ſ
								-									+	-									


in the second


. .



**Greiner**, Inc. JOB I-4/Crosstown Connector SHEET 4 OF 4 PROJ. NO. CIIO4 6 DESCRIPTION ALT A TOIL Scheme 1995 MOT TRAFFIC DATE 2/Jan 89 COMPUTED BY ERM CHECKED BY GSR HOFDATE 3/27/89 Mestono Basic Preeway Segments ·5 West of 50th Street CSN. VF= 4208 (0.98)(0.95) Nf 4208 upn \1f/VC=4520 = 1.08 -VF-4520pcpn on 4LU Treeway 4200 -West of split to South Connector GS:A Nf= 5098uph Nf= 5098 (0.98 (0.95) Vf = 5476 = 1.30 Vf. 5476 pcpn on 4h Theeway Vc 4200 GSK-Mest of exit to 15th ST VI = 6546 - 1.04' NF = 60940pnVf = 6094/0.98(0.95)Nf-6546pcpn on GLN Freeway Vc 6300 GR West of entrance from 21st/2000 VF-6864/0.98(0.95) VI: 1373 - 1 Vf = 68640pnON GLN FLEEWay VC 6300 VF - 7373 pcpn 105F GAL + EAST of off-to soch NF = 4630 NF-4630 10.98(0.95) VF-4973 - 0.79 NF= 4973 pcph 641 NC 6300 LOS







**Greiner** , Inc. SHEET 2 DF 2 PROJ. NO. CHO4.70 -4/Crossoown Connector IJR DATE 1//7/90 ing grea between COMPUTED BY GSR TION 11/12/90 (WB) CHECKED BY LOCEDATE _ 2,065 to Q of 14th 57. 1,000 for ramp 1,065 wearing area longth 14th st. 2176 770 I-275(NB 6,864 6,094 (244.ph)/(0.95)(0.98)=262 pcph (526 yph)/(0.95)(0.98)=565 pcph 4688 1-275(WB) (1,932, vph)/(0.95)(0.98)= 2,075 poph (4,162 vph)/(0.95)(0.98)=4,470 pph 2,075 pcph + 565 pcph = 2,640 pcph 262 pcph + 565 pcph + 2075 pcph + 4,470 pcph = 7,372 pcph 2,640 pcph/7,372 pcph = 0.358 7,372 peph/3 lanes = 2,457.33 pcphp 1,065ft. Unconstrained 13 Weave JDP 5C 32.83 J. (a.100)(1+0.358)1.2(7,372/3)0.77/(1,065) = 15 LOSE 26.90 15 Daw (0.02) (1+0.358) 2-0 (7,372/3)142/(1,065)0.95 LOSF) 30.085 + 0.703 (0.358) + (234.8/1,065) - 0.018(26.90-32.82) Ny (max) = 3.0 => Unconstrained

#### APPENDIX C

. .

}

:

---

#### OPENING YEAR (1995) NO-BUILD CAPACITY ANALYSES

JOB I-4/Crosstown Connector DESCRIPTION ALT A TOLL Scheme 1995 NO BUILD ANOLYSID ERSTROUND Ramp JUNCTIONS SHEET __ OF # PROJ. NO. <u>CIID4.61</u> COMPUTED BY <u>EKM</u> DATE <u>16 Dec 88</u> CHECKED BY GSR /HAE DATE 3/27/09 EXIT to 21St/22ND ST Lano Deop SV12=6016 ND. 1037 10.95 (0.98) Vf. VD= 1114 pcph 7053 Vo - 1037 LOSB  $V_{f} = 7053/(0.98 \times 0.95) = 7,576$   $V_{f} = 6016/(0.98 \times 0.95) = 6462$ 12+3= 7576-1114 = 6462 pepk  $V_{273}/V_{C} = 6462/4200 = 1.54$ Va  $N_{c} = 1114/2200 = 0.51$ Entrance Ramp from 22 nd St Figure 5-1 ¥ VI= 136 + 0.345 Vf - 0.115 Vr JVf2 6637 7 V1=136 + 0.345 (6016) -0.115 (601)  $\nabla f_1$ 6016 V1=2140 Joh / PT = (0.03)(0.80)(6016) = 144 = 144/2145= FIN = 11+10.067 (1.7-D) 41V = 0.955 1 Vr= 621/0.95 (098) NI = 2140(0.955)(0.95) Nr= 667 pcph / V1= 2,359 pcph / VM = VI+Nr VM=667+2359 VM - 3026 pcph LDSF  $V_{z/V_{c}} = \frac{4103}{200} = 1.95$ VF1 = 6016/(0.95)(0.98)=6462000 V2 - Vf1 - V1 = 6462 - 2359 = 4103pcph Vm/Vc= 3026/2200 = 1,38 Note VI Volumes exceed range for toemula use. Form No. 61002-87

reiner, Inc. SHEET SO DE Y PROJ. NO. C1104.61 JOB J-4/Crosstawn Connector DESCRIPTION ALT A TOLL Scheme 1995 No BULD Analysis Eastround Pamp Junctions DATE 16 Dec. 88 COMPUTED BY EKM CHECKED BY CSR /HOE DATE 3/27/89 6SK Bamp to 40th Street EVIT ¥ Fig 5-2; VI=165+0.345V. (+0.520Vr VI-165+0.345(6637)+0.520(1373) 5264 Vfz 6637 Vfi ND=V1=3169.0ph 1373 ND-3169/0.966(0.95) PT = 6637 (0.03×0.80)=15A = 159/3169=0.050 UD = 3453 pcph LOSF fity . 1+0.050 (1.7-D = 0.966 Vf1 = 7129 = VA= 6637/0.98(0.95) - 7129 pcph 1.70 Ne = Vf1 + VD = 7129 - 3453 = 3676 000 NC 4200 5453/2200 - 1.57 to Ke= X Note V/ volumes exceed. 1/VC = 3676/2100 = 1.75 normal range for the equation 1 I 1 Form No. 61002-67

Greiner, Inc. JOB I-4/Crosstown Connector SHEET 3 OF 4 PROJ. NO. C1104.61 DESCRIPTION ALT A TOLL Scheme COMPUTED BY ERM DATE 16 Dec 88 1995 No Build Analysi CHECKED BY GSR/MAY DATE 3/27/89 Eastbound Ramp Ju Eastbound Weaving Section between 40th Street and 50th Street/Columbus Dr. (BA 5264 5642 1,379 378 3,904 4,193  $-V_{w} = 1,461 + 386 = 1,847 pcph_{--}$ ≥⇒ 386 V = 20 + 1,461 + 386 + 4,193 = 6,0607,360 لا ≥ 4461 VR=1,847/6,060-0.305 19 20 N=3 L = 560' (in peph) (in vph) Type A Weave  $S_w = 15 +$ 26.32 mph /+[(0.28)(1.305)^{2.2}(6,060/3)^{1.0}/(560)^{0.9} (LOSF) Sun = 15 + 39.33mph 1+ [(0.02) (1.305) +0 (6,060/3) 0.88/ (560) 0.6] (LOSE) Entrance from 50th Street GSIL Fig I.5-1 NI= 136+0.345 Vf-0.115 Vr  $\sqrt{1} = 136 + 0.345(4263) - 0.115(387)$ SUG = 4263 VI= 1562 Up Vfz=4650 PT=4263(0.03)(.80)=102;102/1502=10.065 Vr=387 FHV = /1+ (0.065)(1.7-1) = 0.956 VI=1562/0956(0195)=1720pcph Vf1=4263/0.95(0.98)=4579pcph Nr= 387/0.98(0.95)=416 pcph 1/2=4579-1720= 2859 DCDD Nf2=4650 10.95(0.98)=4995 paph VIN2 - 4995-2136 - 2859 pcph UH= UHVr=1720+416=2136 pcph _COE NELVC = 4579/4200 = 1.09 * Note: 117 values exced the norma range of use for the equation VM/VC- 2136/2200 = 0.97 V2/X = 1859/2100 = 1.36

Form No. GI002-87

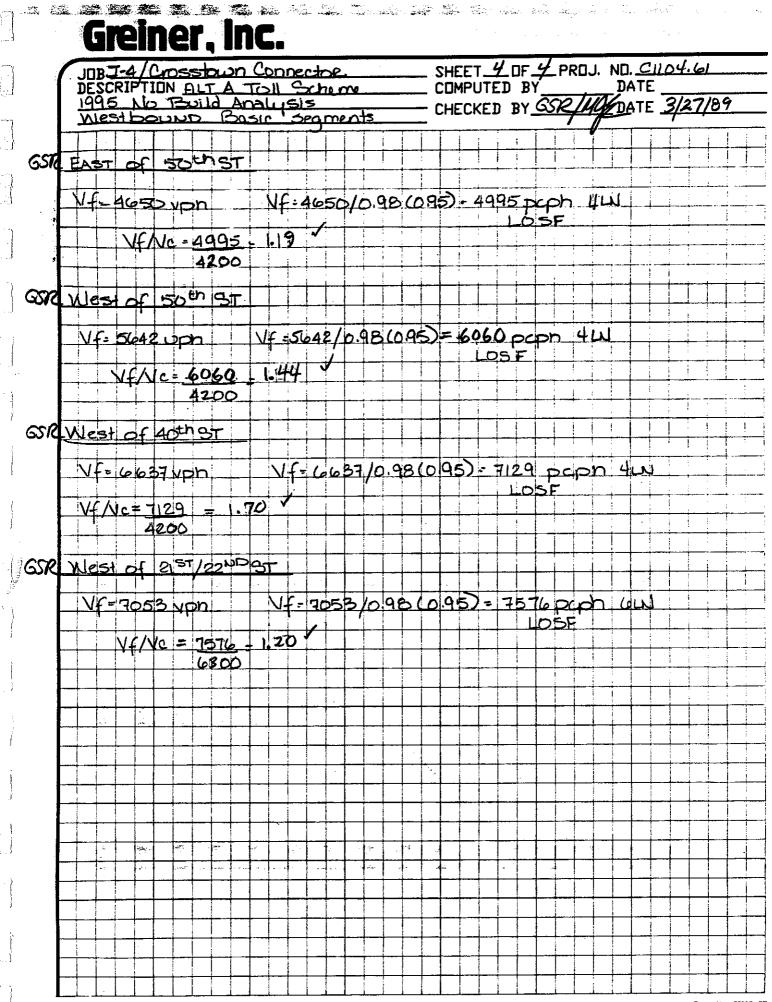
einer. Inc. SHEET 4 DF 4 PROJ. NO. C1104-61 JOB J-4/Crosstown Connector DESCRIPTION ALT A TOIL Schemes 1995 No Build Analysis COMPUTED BY ELM DATE CHECKED BY HOLDATE CHECKED BY____ Castbound Basic Segments GM West of 2151/22 ND 9. Nf = 7053 uph Nf = 7053/0.98(0.95) = 7576 pcpy 6LN. LOSE Nf/Vc = 7576 - 1.20 -OF RIST/22ND ST GSR EAST NF=6637/0.98(0.95) = 7129 pcph 4W. Vf=6637 uph LOSF / NF/NC = 7129 = 1.70 4200 GREAST OF 40th ST  $N_{f} = 5642 / 0.98 (0.95) = 6060 pcph 4LN$ Nf=5642 vph 100 NIAL = 6060 - 1.44 4200 GREAST OF 50th ST NF= 4650/0.98 (0.95) = 4995 pcpy 4LN VF=4650 Vph ŚF 1.19 VF/VC- 4995 4200

2. ¹. 1

. .

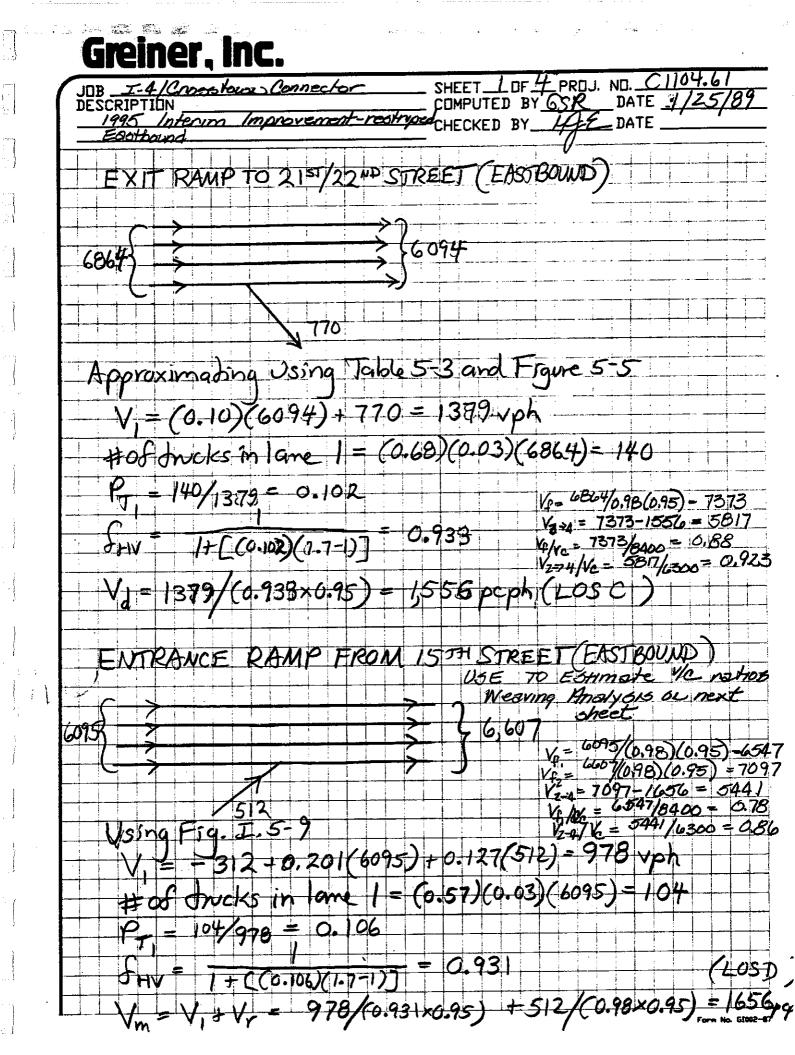
. -

. [. ]


.

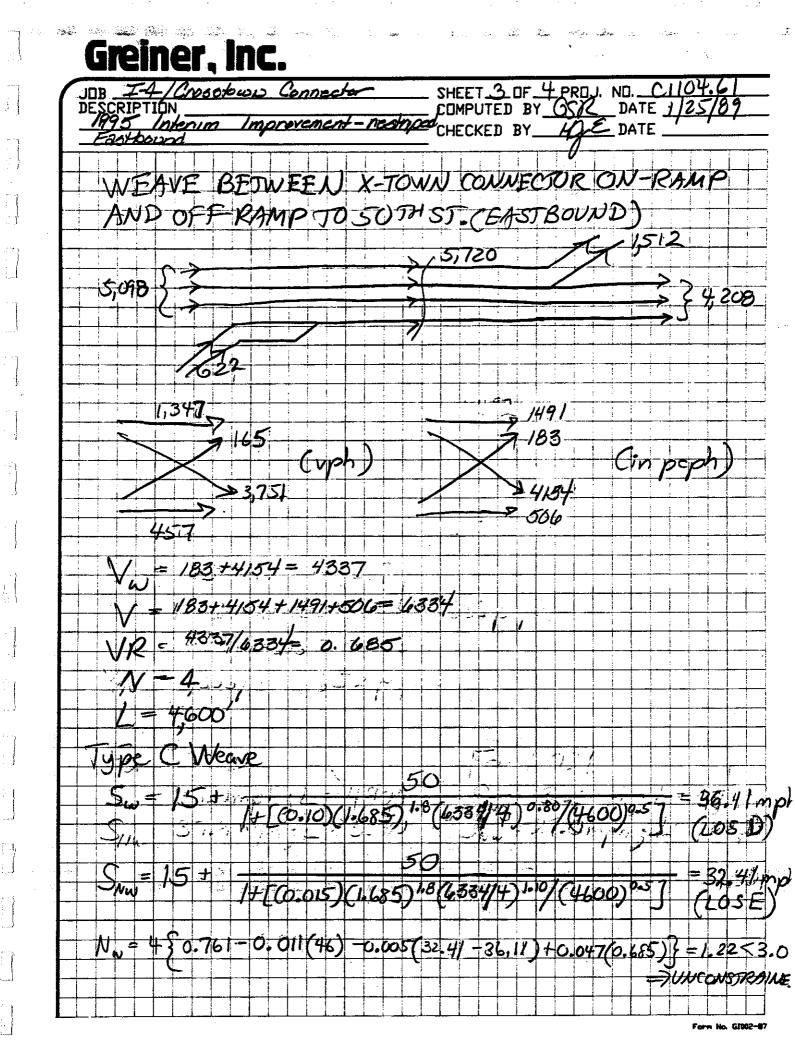
; ;-

<u>IAIESTRO</u>	ION ALT A TOIL Build Fraus und Pamp	lunding	SHEET DF_4_PRDJ. N COMPUTED BY <u>CP</u> CHECKED BY <u>GSR/HAPE</u>	DATE KODER 8
Exit Ram	Vr= 38	· · · · · · · · · · · · · · · · · · ·	Fiq1.5-2 Vi=165+0.345 V Ni=165+0.345(4650)+0 Vi=1970 uph	
- Vfz=426	3 12	VF1=4650	PT=0.03(.80)(4650) - 11 ftu= 1/1+10.057)(1.7-1)	2° 112/1970=0 = 0.962
Nfi = 4650/1 Nz = 4995	298(095): 499 - 2156 = 283	5.pcph pcph	ND= 1970 10962(0.95)	EDSE
$V_{f_1}/V_{c} = 4$ $V_1/V_{c} = 4$	1995/4200 - 1.1 2156/2200 - 0.	9 98	* Note Nf exceeds the range you the equ	internal
Vz/Vc=	1839/2100 = 1.	29		
	•			· · · · · · · · · · · · · · · · · · ·
V				

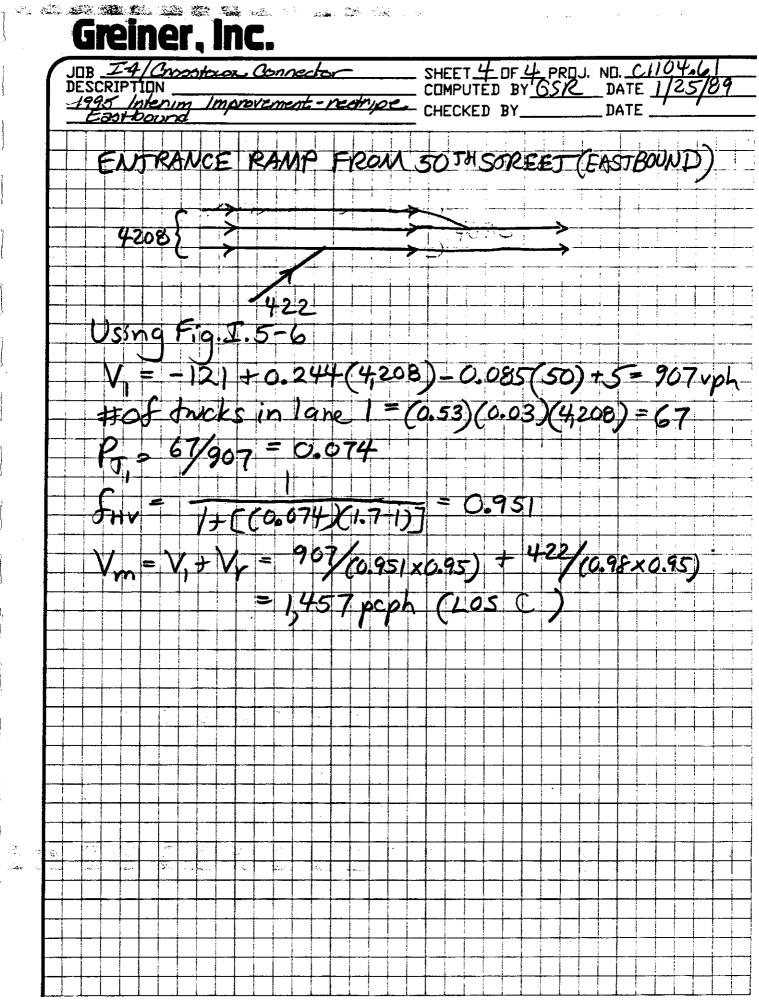

Greiner, Inc. SHEET 2 DF 4 PROJ. NO. CIIO4.61 JOB J-4/ Crosstown Connector DATE 16 Dec 88 DESCRIPTION ALT A TOIL Scheme, COMPUTED BY EKM 1995 No Build Analysia Westbaund Bamp Junctions CHECKED BY OSR HACDATE 3/27/89 Weaving Section between 50th Oree/ Columbus Dr. and 40th Street GSV1 Westbound 1,379 378 5264 5642 4263 Vw=1,461+386=1,847 peph 20 19 - 1,461 1,360  $-V = 20 + 1,461 + 386 + 4,193 = 6,060 p_{p}$ (invph)-(în pcph) VR=1,847/6,060=0.305 359 386 N=3 L = 7403,904 4,193 Type A Weare 50 = 28.67mph (LOSF)  $S_{w} = 15 + \frac{1}{1 + [(0.28)(1.305)^{2.2}(6,060/3)^{7.0}/(740)^{0.9}]}$ Sn=15+ 50 1+[(0.02)(1.305) 4.0(6,060/3) 0.88/(740) 0.6] = 41.42mph (LOSE) GR Entrance Ramp from 40th 31 Vr=1373 ¥ Fig J.5-1 VI=136+0.345 Vf -0.115Ur N= 136+0.345 (5264)-0.115 (1373)  $V_{1} = 1794 \text{ voh}$  $P_{T} = 5264(0.03)(0.80) = 1263^{-126/1794} = 0.070$   $f_{HU} = \frac{1}{1+0.070}(1.7-1) = 0.953^{-1}$ VIF2= 6637 V41=5264 VM2 NF1=5264/098(095)=5654 pppn Vz= 5654-1982 - 3672 pcoh NI= 1794/0.953(0.95)= 1982 pop Nr = 1373/0198(045) = 1475000 1UM = VI+Ur - 1982+1475 = 3457 pcph Nf1/VC = 5654/4200 -+ Note Vf exceeds the normal 1.35 range for the equation VM/VC = 3457/2200 = 1.57 V2/Vn = 8672/2100 Form No. GI002-6

Greiner, Inc. SHEET 3 DF 4 PROJ. NO. C1104.61 JUBJ-4/Crosshwn Connectoe DESCRIPTION ALT A TOIL Scheme 1995 No Build Analysis Westbaund Pamp Junctons . COMPUTED BY DATE EDATE 3/27/89 CHECKED BYGSR GSA Exit Ramo to 201 St * FIGIE5-2 VI=165+0.345 VF+0.500Vr VI=165+0.345(6637)+0.520(62) Vr = 621V1: 2778 1ph / PT= 6637 (003)(0.80)=159; 159/2778=0.057 Vfz=6016 Vf1=6637 filo = 1/1+ 10.057)(17-D= 0961 H1=6637/0.98(0.95)=7129pcph VI= UD=2778/0.96(0.95) Va= 9129-3043=4086prph [1]D = 3043 pcph LDS F Nf1/VC = 7129/4200 = 1.70 V1/VC = 3043/2200 = 1.38 ¥ Note: Uf Exceeds the normal tange for the equation N 2/4C = 4086/2100 = 1.95 Lane Add GSR Entrance Bamp from 29rd 51 NM= 1037 Uph /0.98 (0.95)= 114 pcp Vr = 1037LOSB 12+13= Nf1=6016/0.98(0.95) Vf= 7053 141 = 6462pcpn Vf1=6016 N/2 Vfz=7053/0.98(0.95)=7576 pcph Vz=3= 7576-1114 = 6462 V/1 = 6462/4200 - 1.54 VM/NC = 11141/2200 -No. 61002

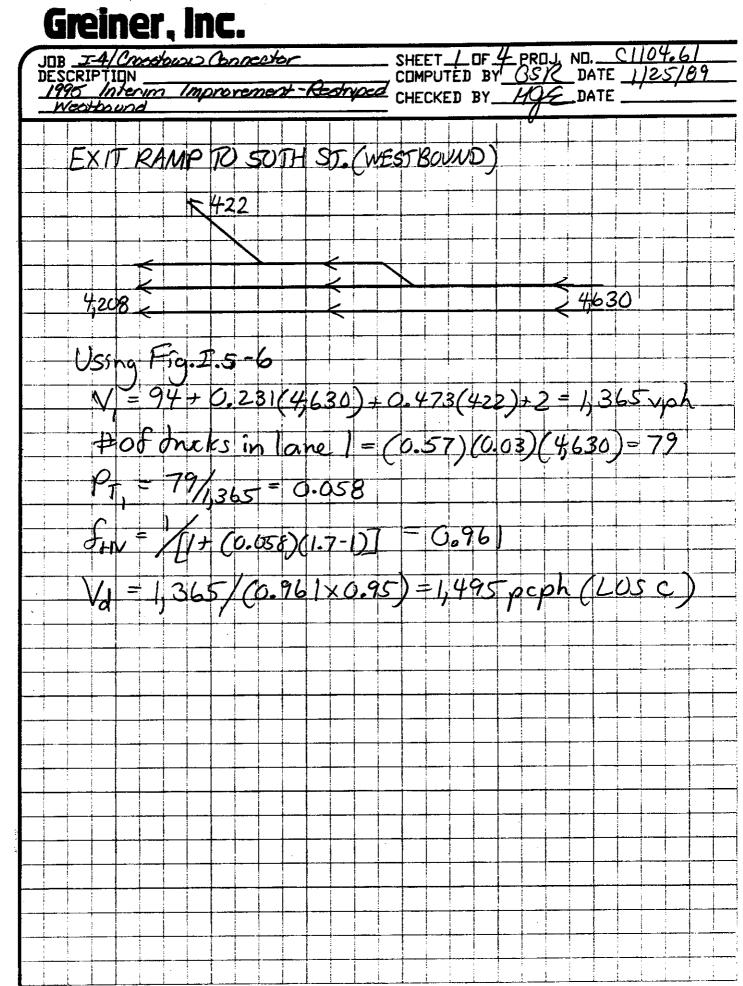



#### APPENDIX D

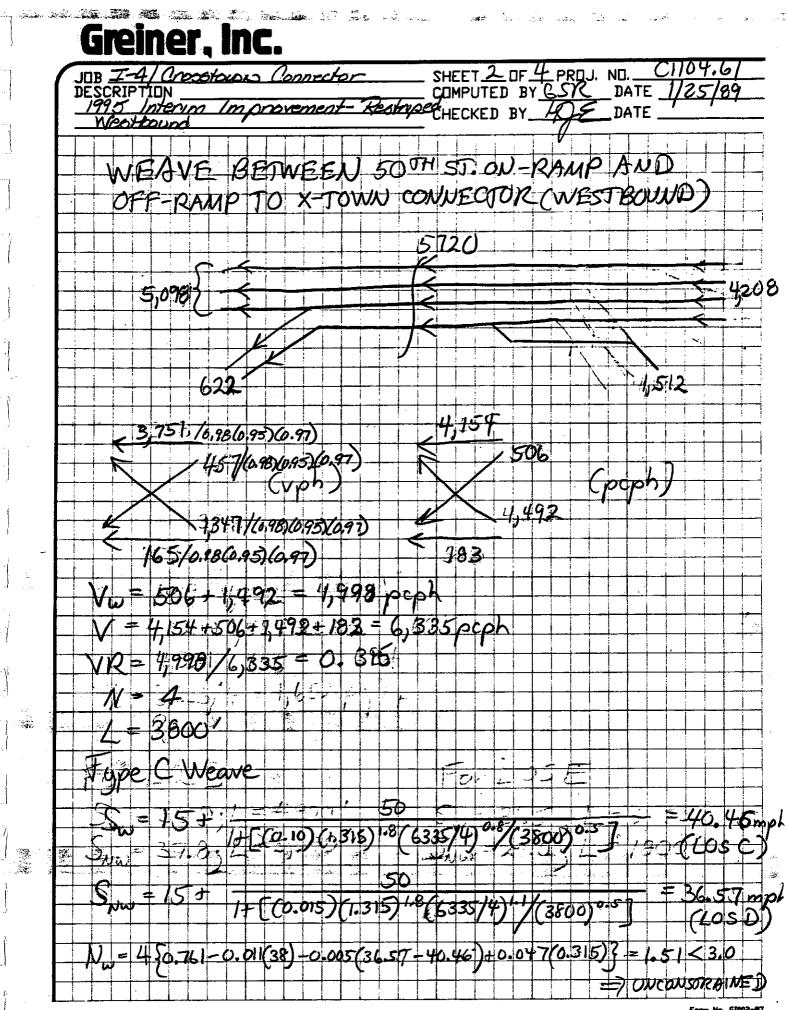
#### OPENING YEAR (1995) PHASE I INTERIM IMPROVEMENT CAPACITY ANALYSES




**Greiner, Inc.** C1104.6 SHEET 2 OF 4 PROJ. NO. ______ C1104.6 COMPUTED BY GSR DATE 1/25/89 JOB I-4/ Crosstop Connector CHECKED BY <u>HOE</u> DATE WEAVE BETWEEN 15TH ST. ON-RAMP AND OFF-RAMP TO CROSSTOWN CONNECTOR (EASTBOUND) 6606 5,098 6094 3/00 512 1,508 4612/(0,95)(0.95)(0.97) .5,107 486/(0.95)(0.95)(0.97) 53K (vph) (pcp 1,482/0.98 (0.95) (0.97) \$1641 26/10.98 0.95(0,97) 29 838+1641= 2,179 538+1641+29+5107= 7315. 2179/7315 - 0.298 UNCONSTRAINED 2w  $|+[(0.10)(1.298)^{1.2}]$ (3100 (7315A4) 42.81 mph (10 5 C Davia 0.02)(1.298)2.0(7315) <u>43400</u> 11.42 44.47 mph (LOSC) Nw=4{0.085+0.703(0.298)+(234.8/3100)-0.018(44.47-42.81)}


. .




2 1.



**Greiner, Inc.** PROJ. NO. C1104 I-4 (Crocotows) Connector DF_ SHEET_ COMPUTED BY GSR DATE //25/89 restape. CHECKED BY___ DATE BASIC FREEWAY SEGMENTS WEST OF RAMPS TU/FROM 21 ST. Vg=6,864 vph frv PHF frv = 6,864/(0.98×0.95×0.97)=7,601 pcph  $V_{L} = 7,60$  (LOSE) · WEST OF RAMPS TO/FROM 15TH ST. Vr=6,094vph 6,094/(0.98×0.95×0.97) = 6,748 pcph V/c=6,748/8,400=0.80 (LOSD-AST OF RAMPS TO/FROM X-TOWN CONNECTOR  $f_{f} = 5,720 \text{ vph}$  $= 5,720 / (0.98 \times 0.95 \times 0.97) = 6,334 pcph$  $V_{C} = 6334, /8400 = 0.75 (LOSD)$ • INBETWEEN EASTSIDE RAMPS TO/FROM 50THST. AWI WESTSIDE RAMPS TO/FROM 50THST. = 4,208 vph = 4,208/(0.98×0.95×0.97) = 4,660 pcph 1/-= 4,660/8,300 0.74 (LOS D /FROM 50TH ST. (EASTSIDE OF 50THS AST OF RAMPS TO 4,630 vpl  $= \frac{4}{630} (0.98 \times 0.95 \times 0.97) = 5,127 \text{ poph}$ = 5,127/6,300 = 0.81 (LOSD)



Form No. G1003-87

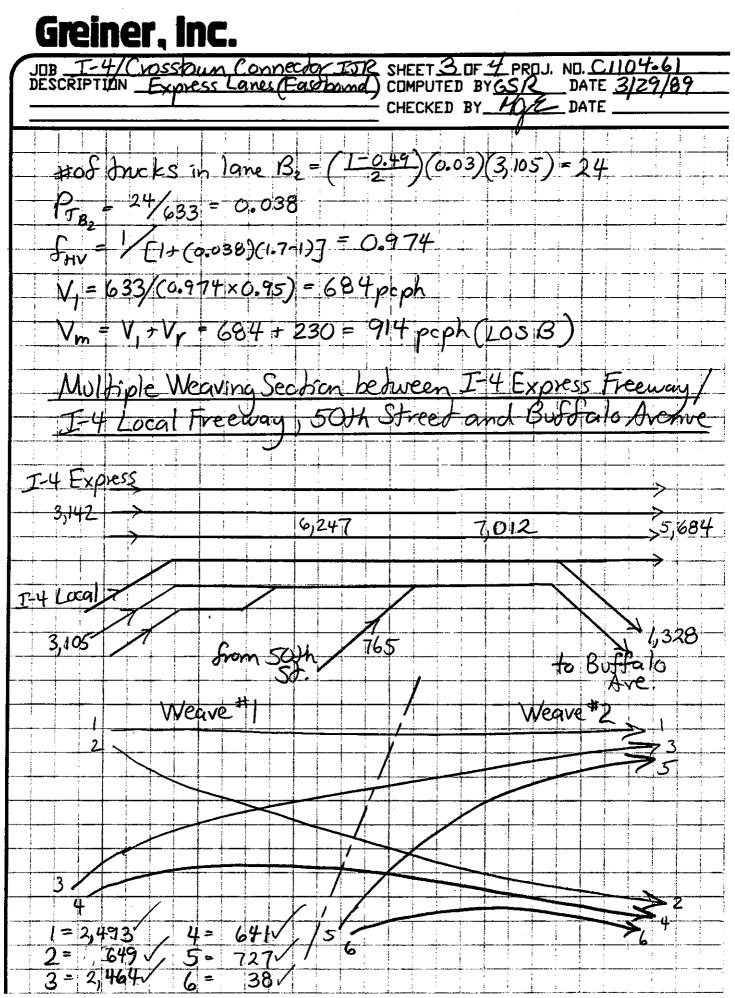


Greiner, Inc. JOB <u>I-4/ Crossolouses</u> DESCRIPTION SHEET 3 OF 4 PROJ. NO. C1104.6 COMPUTED BY 652 DATE 1/25/ Connector Improvement nestripe CHECKED BY 49E DATE 1995 Interim Westbound WEAVE BETWEEN CROSSTOWN CONNECTOR ON RAMP AND 15TH ST. OFF-RAMP (WESTBOUND) 1,508 23001 512 6,094 6,606 20 ,482 1,641 (vphpcph 5.38 5,107 4,612  $\sqrt{\omega} = 538 + 1,641 = 2,179$  pcpl = 29+1641+538+5,107 = 7,375 pcph = 2,479/7,315= 0.298 1R 300 PE B (UNCONSTRAINE) 50 -15 7315 0077/2300 f(0.10)(1.298)40.95mph (LOS C) 15 + 1 · (1,315) 1.42/(23.00) 0.95 λw 1+[(0.02)(1.298) = 40.97mph (LOS D)  $N_{w} = \frac{4}{0.085} + 0.703(0.298) + (234.8/2300) - 0.018(40.97 - 40.95) = 1.58 < 3.5$ = JUNCONSTRATTIEN

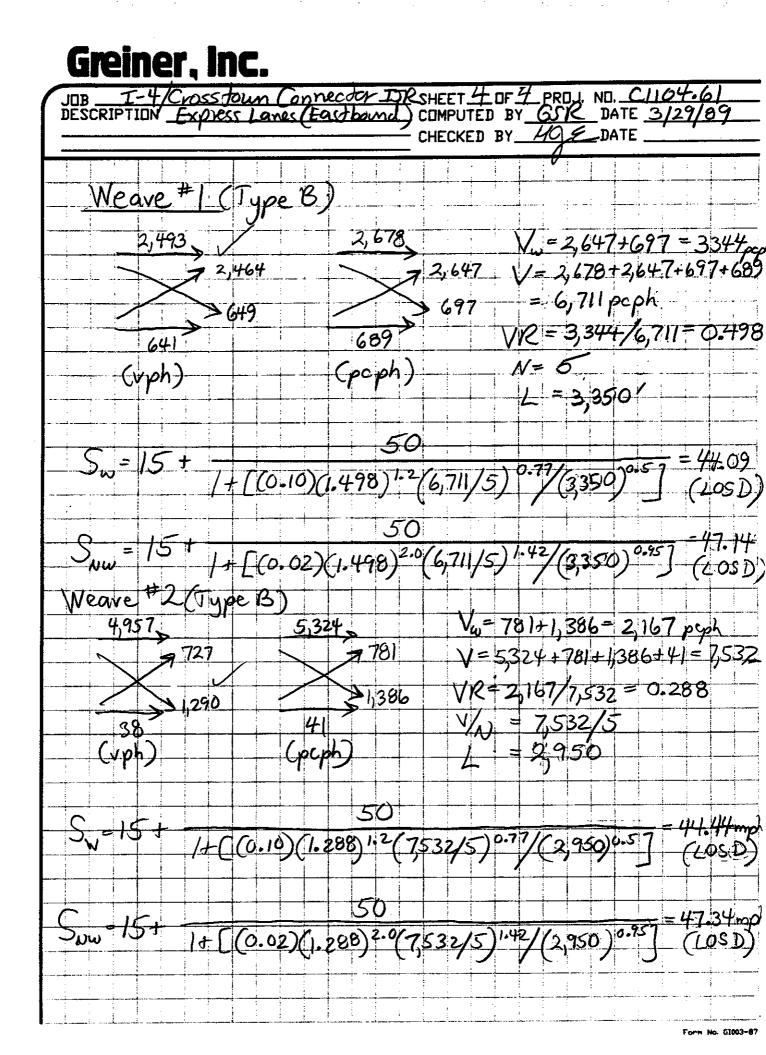
Greiner, Inc. 4 DF 4 PROJ. NO. C1104.61 JOB I-4/ Crosstowe Connector SHEET. COMPUTED BY GSR DATE 1/25/89 DESCRIPTION _____ COMPUTED BY GSR 1995 Interim Improvement-restripe CHECKED BY 478 Westbound DATE NTRANCE RAMP FROM 21ST ST. (WESTBOUND 770 6,094 6,864 tig I.5-9 Sina 2 + 0.201(6,094)+0.127(770) = 1,011 vph # of Incks in lane 1 = (0.57×0.03×6,094)=104  $P_{T} = 104/1,011 = 0.103$ JHV 0.933 + [ (0.103) (1.7-1)] 770/(0.98 × 0.95) = 1,968 pcph (0.933 × 0.95) + 1.0H m rus E 0094/(0.98) (0.95) (0.97) - 6748 pep Kn= Vŗ, = 6864/0,98(0,95)(0,97) = 7601 00 V201 = 7601 - 1968 = 5833 pcp Ve /Vc = 6748/8400 0.80 VIAV = 1968/ 2200 = 0.90 1274 1/2 = 50 33/630 5.89

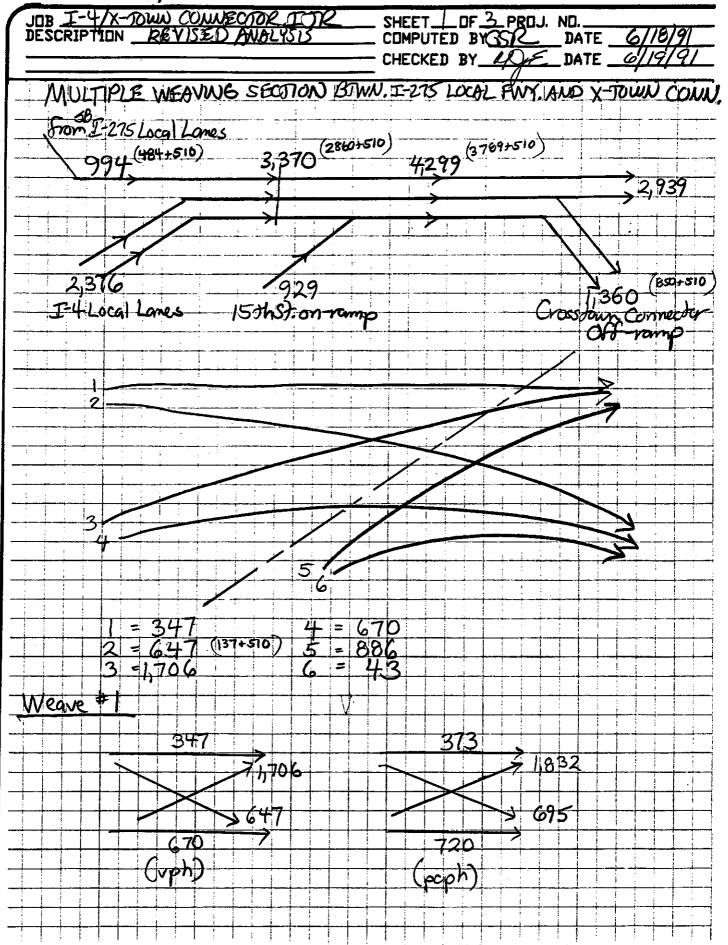
Ľ.

#### APPENDIX E


----

#### DESIGN YEAR (2010) PHASE II CAPACITY ANALYSES

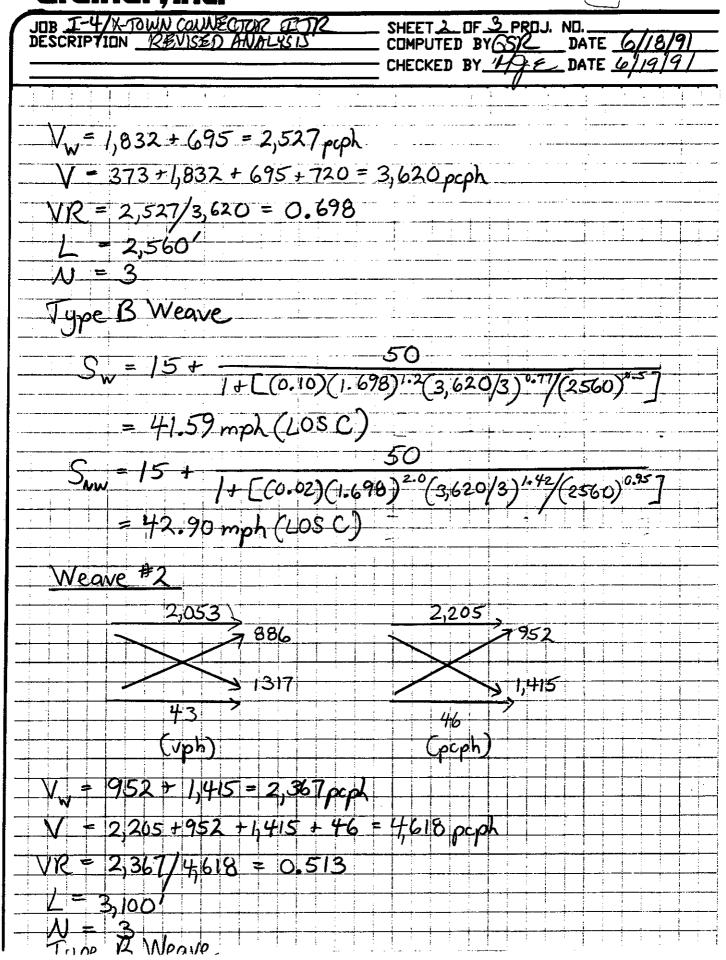

.


JOB I-4/X-TOWN COME OTOR JOR OF <u>+</u> PROJ. ND. DESCRIPTION REVISED ANALYSIS COMPUTED BY GS DATE 6//8 CHECKED BY HARE DATE 6/191 I-4 DIVERGE TO CROSSTOWN CONNECTOR I-4Express Freewar 4,275 5,698 10 X-Jown Connecc VB \$ 1.423 (6,208-510) (1,933-510) sing Fig. I.5-12 to determine aff-ramp distribution V1+1 = -158+0.035 (5,698) + 0.567 (1,423) = 848 uph = 18 + 0.060 (5,698) + 0.072 (1,423) = 462 vph  $V_{A} = V_{173} - V_{1} = 848 - 462 = 386 vph$  $V_{B} = V_{r} - V_{h} = 1,423 - 386 = 1,037 \text{ vph} (\approx 73\% \text{ of } V_{r})$ # of trucks in lane B = (0.68)(0.03)(1,423) = 29  $P_{5R} = 29/1037 = 0.028 \quad f_{1V} = 1/(1+(0.028)(1.7-1)] = 0.981$ # of trucks in lane A = (0.32)(0.03)(1,423) + (0.53)(0.03)(4,275) (2500 Fig. I.5-7 94 + 0.231 (5,698 - 1,037) + 0.473 (386) + 2 = 1,355 uph PHA = 2/1355 = 0.061 +(0.061)(1.7-1)7 JAV 1,355/(0.959)(0.95) = 1,487 pcph 1,113 pcph Vdz (LOS-B) = 1,037/(0.981)(0.95) =

**Greiner, Inc.** JOB <u>I-4/Cross-town Connector IJR</u> SHEET <u>2</u> OF <u>4</u> PRI DESCRIPTION <u>Express Lanes (Eastband</u>) COMPUTED BY <u>65R</u> PROJ. NO. C1104.6 DATE 3/29/89 CHECKED BY HOR DATE Off-ramp to I-4 Loca J-4 Express 4275 3092 1,183 to I-4 Local Using Fig. I.5-7  $V_1 = 94 + 0.231(4,275) + 0.473(1,183) + 2 = 1,643 vph$ #of trucks in lone 1 = (0.54)(0.03)(4,275) = 69  $P_{T} = 69/1,643 = 0.042$  $f_{HV} = \frac{1}{11} + \frac{1}{(0.042)(1.7-1)} = 0.971$ V1 = V, = 1,643/(0.971×0.95) = 1,781 peph (LOS D) I-4 Express Merge with I-4 Loca VA3= 0.47(3,142) = 1,477 upt  $V_A =$ V. 3,142 6,247 VB = 0.06 (3,105) = 186 vph  $V_f = (3,142 - 1,477) + (3,105 - 186)$ = U = 011NB 4,584 uph Using Fig I.5-9 -312 -0.201(4,584)+0.127(186)=633vp2 #of drucks in lane B = (0.49)(0.03)(3,705) = 46 PTB = 46/186 = 0.247 thv = (0.247)(1.7-1) = 0.852 $V_r = V_{B_1} = \frac{186}{(0.852 \times 0.95)} = 230 \text{ pcph}$ No. GI003-



Form No. 61003-87



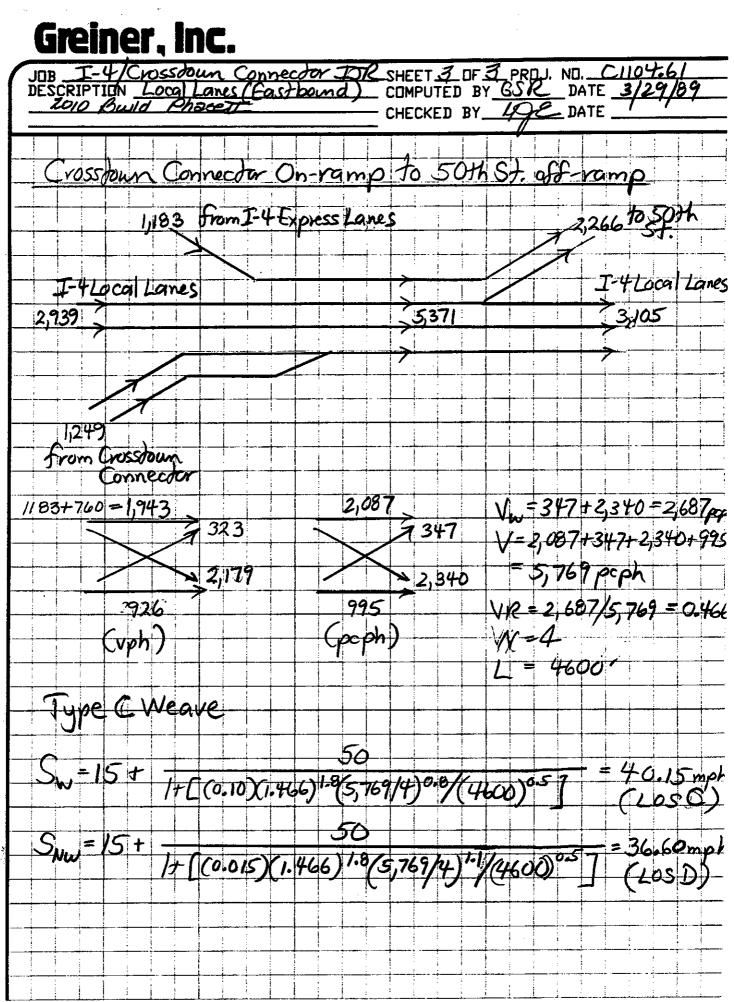


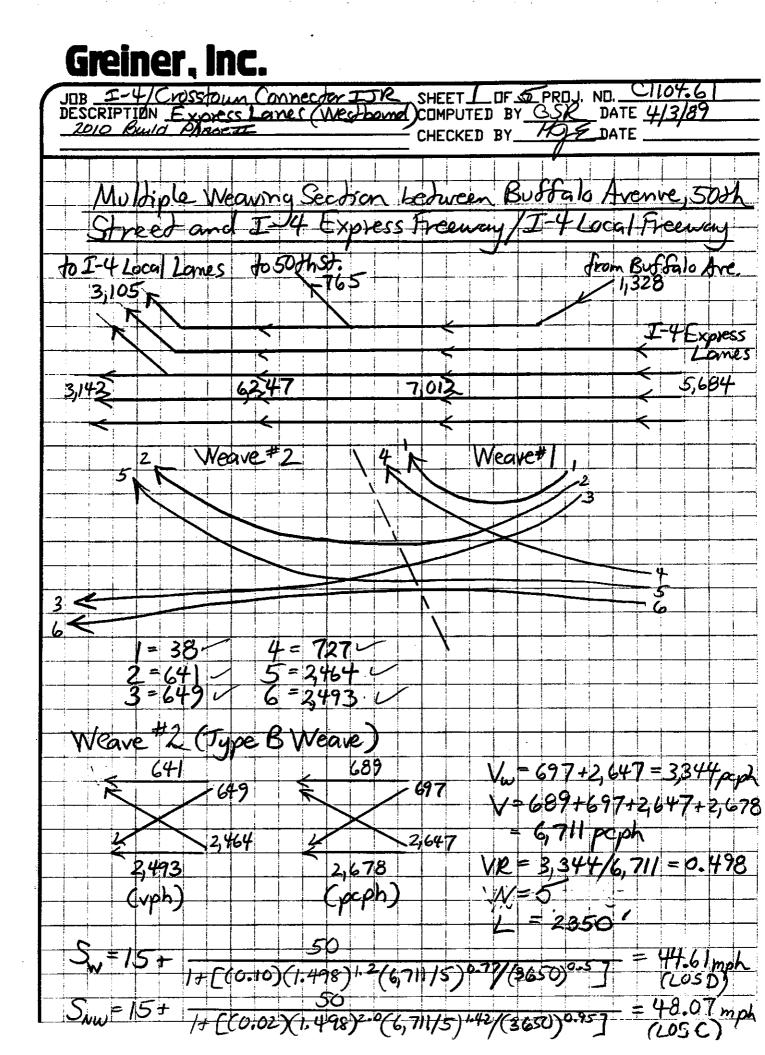

. _ _

. 6

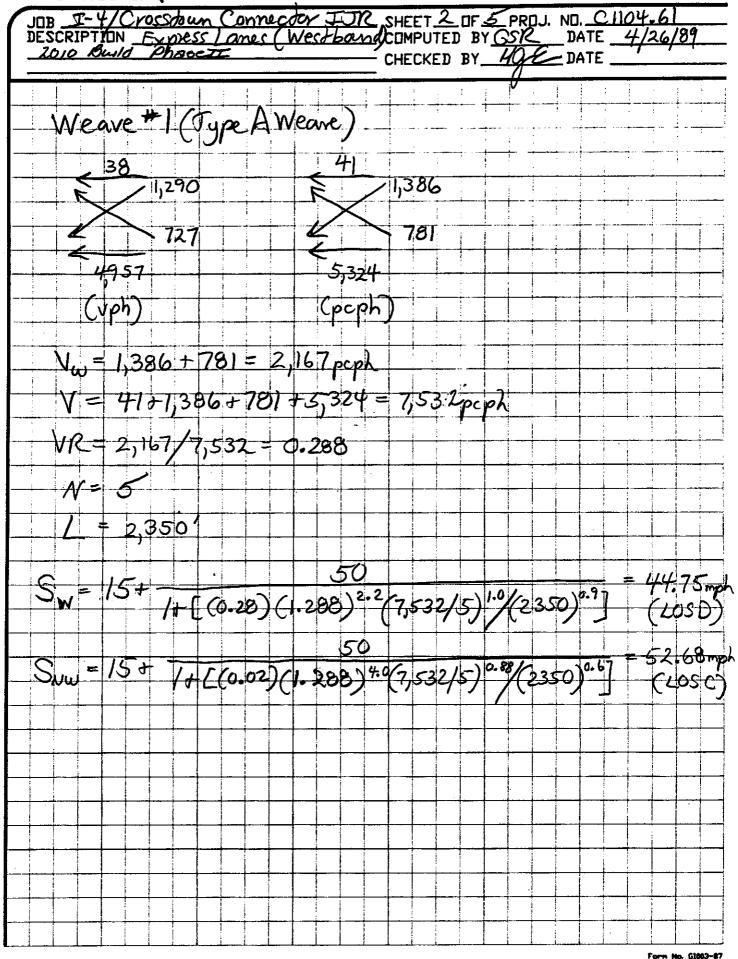
.



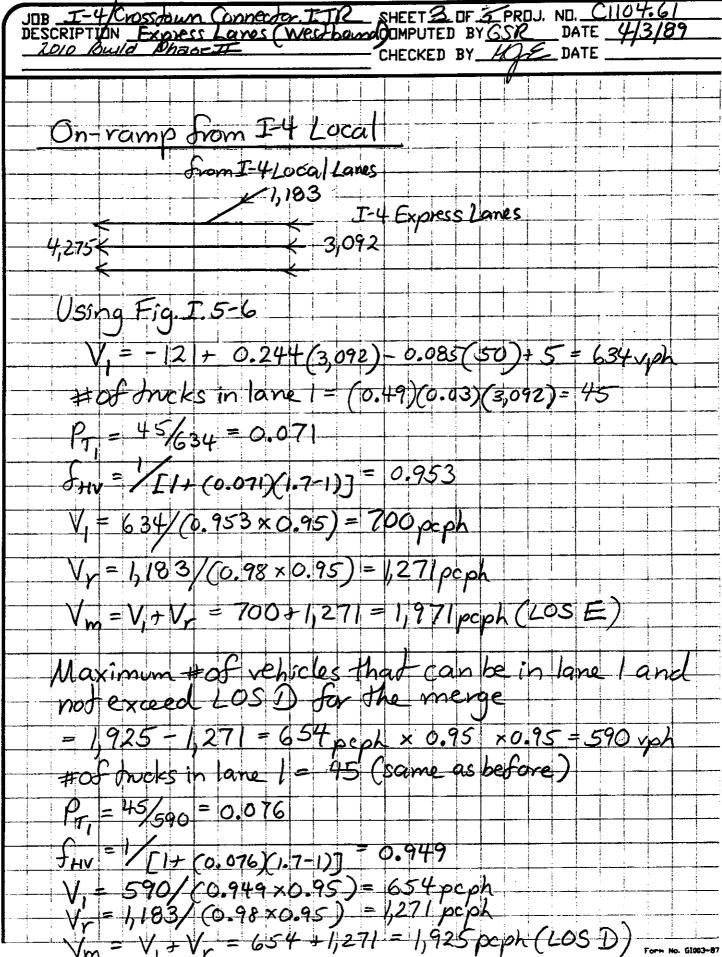

-


· -

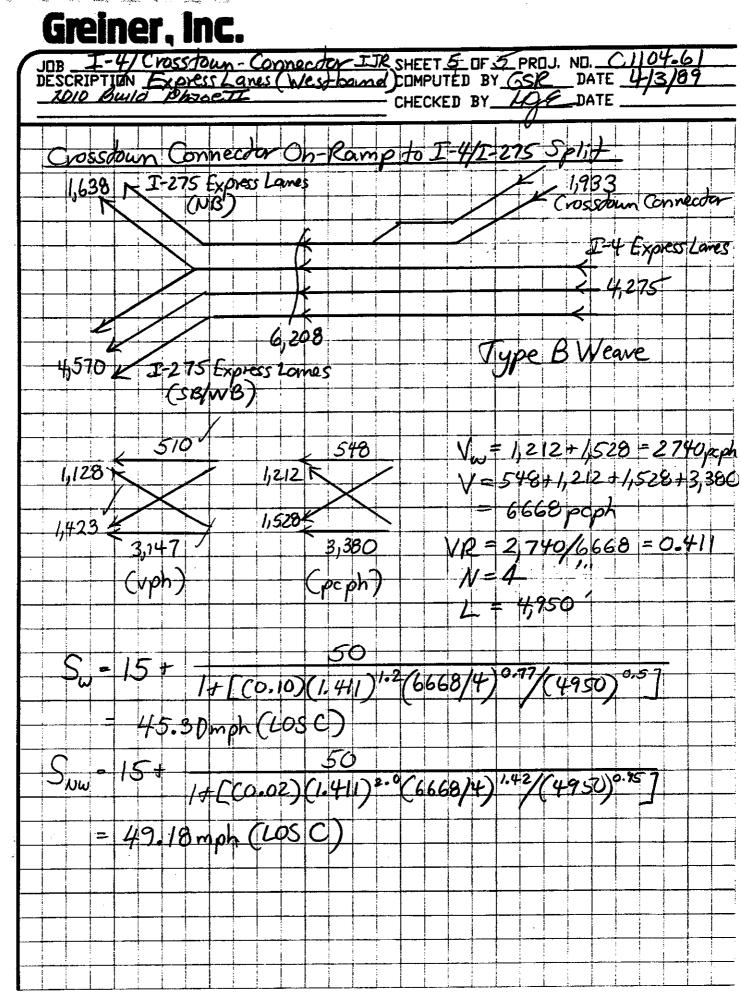
}

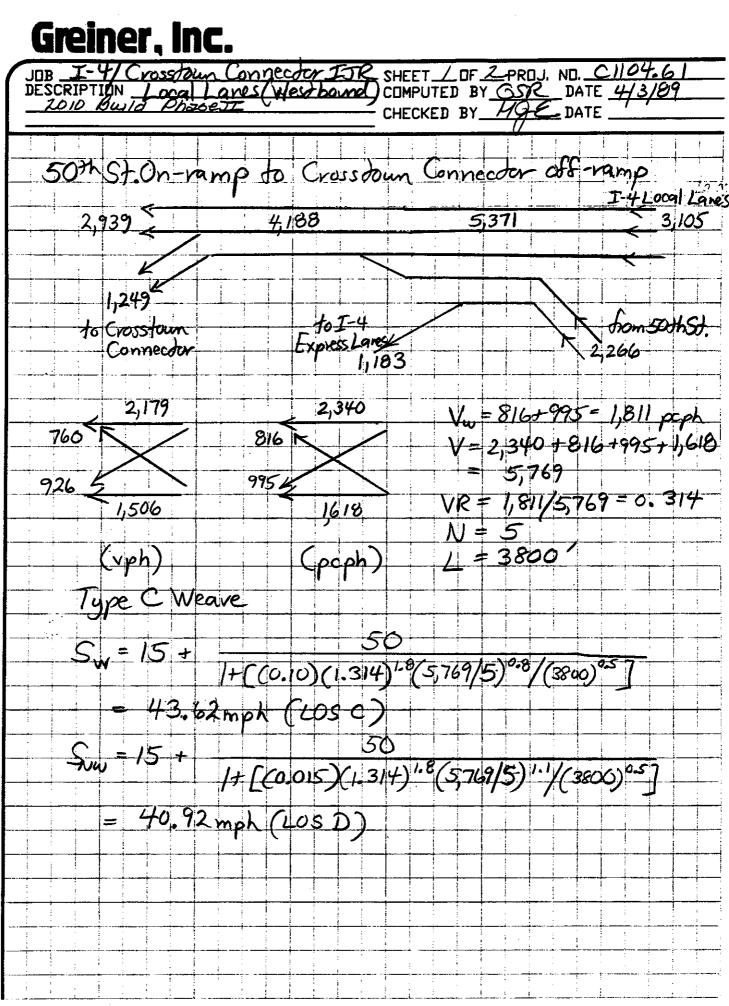

 $\left[ \right]$ 

JOB . DESC	RIPT		-101 -12	10 ( EVIS	ionn SED	FC) AN	OR C BLYS	ETI IS	2			MPU.	TED	BY,	<u>3</u> Pl 657 14	R	_ D	ATE		<b>[18]</b> [19]	<b>9]</b> 9]
			ļ			: .		÷		!	-	: ·			V	: ;			1	1	1
·····			· ·						50	)	·			·		i-					
<u> </u>	W	-R	5 7	1	1 (	- ~~	.10)	1	<u> </u>		2/	17	100		0.77	110	<u>אר</u>		57	-=4	2.1
	· · · · · · · · · · · · · · · · · · ·			1	σL	0)	.19	()	51.	<u>3)'</u>	(	761	101	3)	/	(-3)	,700	ク		_((	bs
	·			· · · · · · · · ·			·		61	5	-+			<del>-</del>				· ·		-f	
S	) 	-1;	51	Ť.	1	10	02)(	-		) 2.0	5/1	1/ 1	ale	- <u>-</u>	42/	10	100	)0,	957	-=-4	3.7
1	NW	-		19	-1-(			ت <b>د ا</b> ژ 	513	/		561	0/-	ン	7	()	/00	7	L	(L	OS
		!	<u> </u>				<u></u>				;										
												÷									
			, ,	········							·	<u></u>			· <del>-</del>		<u> </u>		• ;		- <u>i</u>
	•••••	1														, 				·	i 
						<b>.</b>						· :		+				+ +			+
												•					:		·		-
	· <u> </u>	·····										<u>.</u>					1		··	••• :	
					:			÷				 	·			; <del>,</del>					
							·	<u> </u>								: 	:				
					1		 !	<u>.</u>													
į				1			; ]					İ								****	
				· · · · · · · · · · · · · · · · · · ·		:	<u>· · · · · · · · · · · · · · · · · · · </u>	<u> </u>					-					-		•	
						· · ·	· · · ·				-				<u>.</u>			÷	<b>-</b>		
	<u> </u>		<u>.</u>			·	<del></del>				+						··	1 .	·		1
																· · · ·		·••			
					+ + + - +													+		; ; ; ;;	
				i la			<u>.</u>	┝╼╼┿													
							<b>∳</b> ∳ ∶ ∶														
													_							ļ	
															-				_ <u> </u>		
:															-		-	┼╼┽			
			1			1											-			 	
				-													1				
					╉╍┥					<u> </u>	+	<u> </u>									
									_								1	<b> </b>			+
		1								·····								1			1
						i 1						1 i			1	÷					

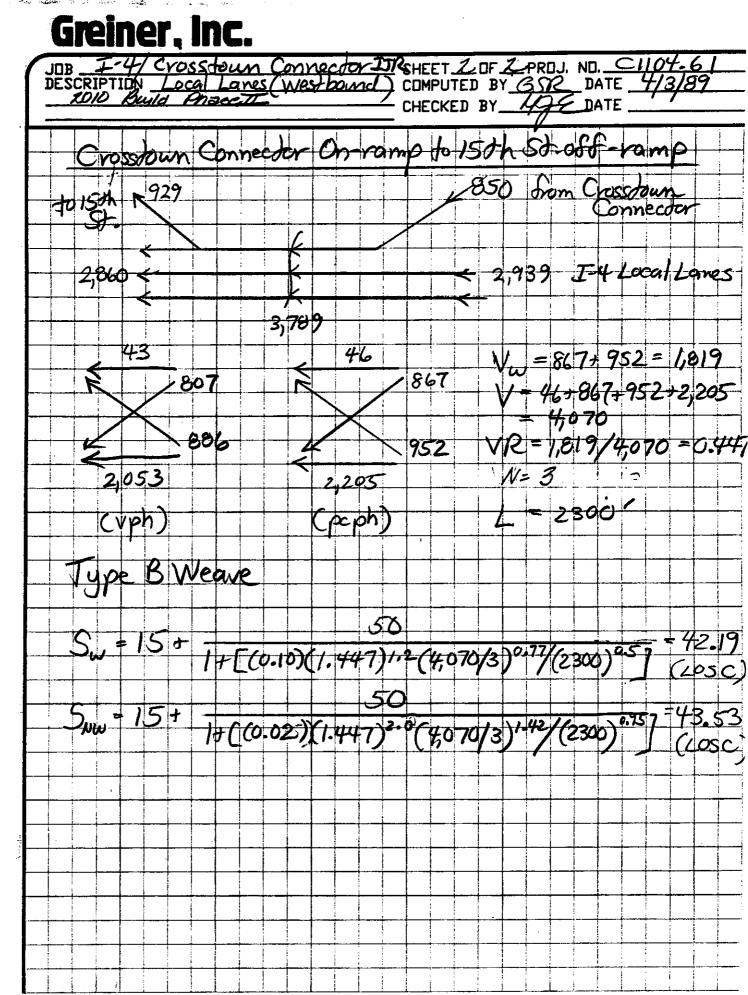




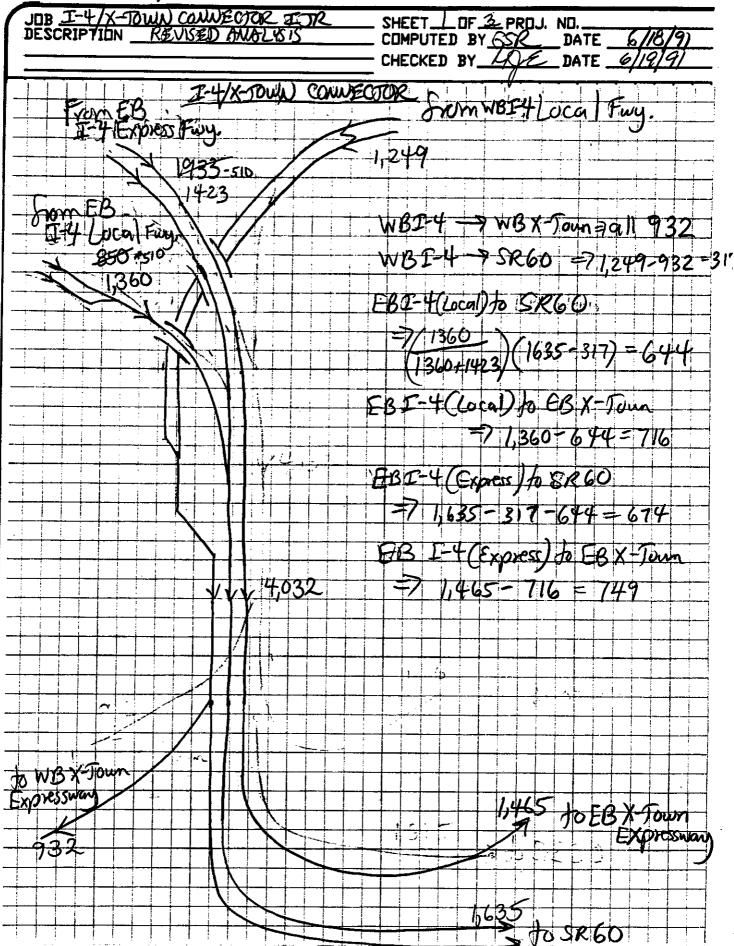


•

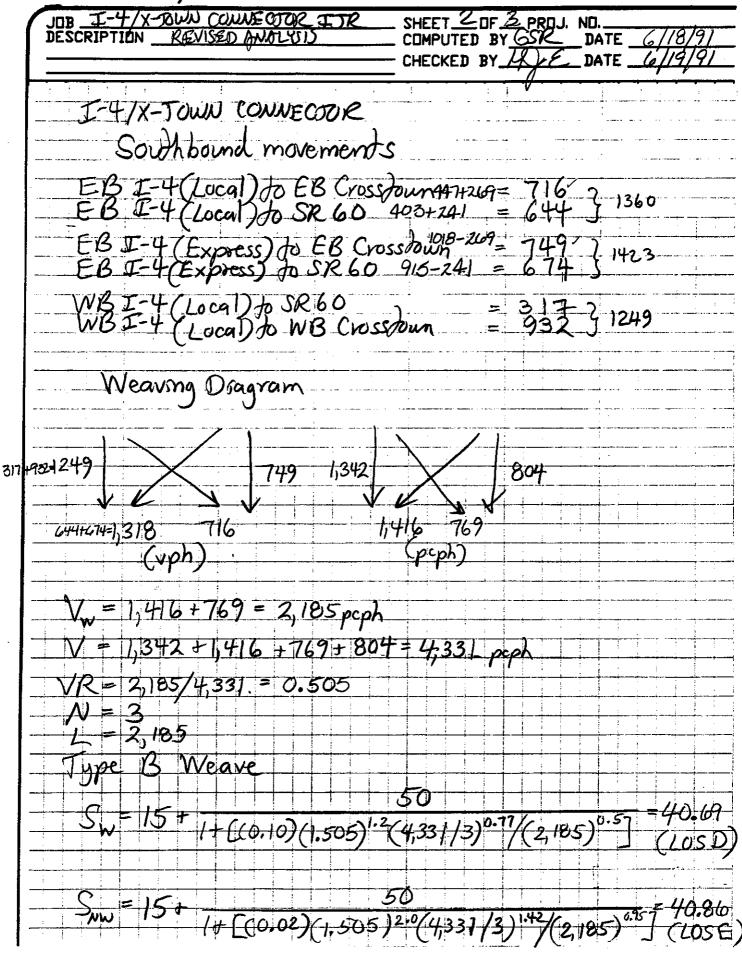



**Greiner, Inc.** 




**Greiner, Inc.** 2-4/Crosstown Connector IJR SHEET 4 OF 3 PROJ. NO. ______ IPTION Express and (Welthound) COMPUTED BY GSR DATE 4/3/8 D Build Phage TE ______ CHECKED BY TO E DATE ______ DESCRIPTION E DATE 4/3/89 Traffic volume in remaining 2 freeway lanes 3,092 - 590 = 2,502 yph per lane volume = 2,502/2= 1,251 uph Assuming Ancks evenly distribute in remaining 2 lanes T= (1=0.49) (0.03) (3,092)/2 = 24 Incks per lane  $P_T = 24/1,251 = 0.019$ HV = /[1+ (0.019)(1.7-1)] = 0.987 Service volume = 1,251/(0.987×0.95) = 1,334, pcphp1 (LOSC




Form No. 61003-67



Form No. 61003-87





£.

. .

SHEET 3 OF 3 PROJ. NO. C1104.6 I-4/Crosstown Connector IOR DESCRIPTION 2010 Ultimate Concept Crosstown Connector (Northbound) DATE 3/28/89 COMPUTED BY GSR DATE CHECKED BY_ Northbound EBX-Town to EB I-4(Local) 932 = WB X-Town to WB I+4 (Local) = 447 WBX-Town to WBI-4(Express) = 1018 SR60 to EBI-4 (Local 317 SR60 to WBI-4 (Local) 403 915 SR 60 to WB I-4 (Express) Weaving Diagram 1635 1,756 447 480 1001 1,018 932 1,093 (vph) (pcph) Nw= 1,756+480 = 2,236 pcph V = 1,093 + 1,756 + 480 + 1,001 = 4,330 pcphVR = 2236/4330 = 0.516 N= 3 L= 2440 Type B Weave (Unconstrained  $S_{W} = 15 + \frac{1}{14 - ((0.10)(1.516)^{12} - (4,330/3)^{0.77}/(2440)^{0.5})}$ = 41.27 mph (LOSD) 50 SNW = 15 + ((0.02)(1.516)^{2.0}(4,330/3)^{1.42}/(2440)^{0.95}] 41.99 mph (LOS D)

ARE	A TYP		. OTHEI		<b>.</b> Of	-RAM	1P/14TH	STREE	ľ					
MIT	E		.4/12. .A.M. .2010	FΞ	АК Н		STOWN CO		JR					
		 V	OLUME:	 3						 6	LOMETRY			
	EE	8 W	B I	NB	5	6B :	EB			WE -		NB		SB
LT	C			0		0:		.0 1		12.0		12.0	7	12.
TH RT	C C			0 0		58 : 92 :		.0 .0		12.0		12.0 12.0	TR	12. 12.
RR	· 0		0	ŏ		0 :	12		ł	12.0		12.0	łπ	12.
	-		•	•		- 1	12			12.0		12.0		12.0
						:	12	.0		12.0	·	12.0		12.0
معن منديا جينك							ADJUSTM	ENT F	acro	RS	<b></b>	) hirfly have darie sinks have darm and		
	GF	RADE	ΗV		ADJ	PKG	BUSES	PH		PEDS	PED.	BUT.	ARR.	TYP
		(*)	(%)			Nm	Nb					min ĩ		
EB		0.00	3.00			0	0	0.95				14.3		3
WB NB		).00 ).00	3.00 3.00		N N	0 0	0	0.95 0.95		50 50	N N	14.3 14.3		3 3
SB		0.00	3.00		N	ŏ	ŏ	0.95		50	N	14.3 14.3		3 3
						 S1	GNAL SE				 rvr	LE LENE		 90
		두⊢	1 Pł	4-2	F		₽H-4			Fi		H-2 F		
EB	LT							NB	LT					
	TH								TH					
	RT PD								RT PD					
WB		х						SB	LT					
	тн	х							ТН		х			
	RT		-						RT		Х			
	םי <del>ק</del>								۲ [:] D	1.03 1110 Alia ilan ilan i				
							LEVEL D							
WB			• V/	/C		G/C	DEI 2	-AY	L	OS F		ELAY		
		L T	0.3	460 460	c c	/. / ± 1 ). 711	<u>ح</u>	1.9 3.7		с Д	12.	(		В
4410					~									

- Ì

. |

· /

-. ,

•

	TERSE	ICTIC	)N )	(-4 h	.в.			******* P/14TH (							
	EA TY ALYSI				2										
DAT	TE		4	+/12/											
	ME							TOWN CO							
			••••		w1 :										
				UMES			÷					LUMET			
			WB	N			в:	EB			w		NE		SB
<u>L</u> .T		Ú Å					Ú:	<u>:</u> 2.	-	•	12.0		18.0		12.
TH		Ú O					8 <b>:</b>		r o		ić.C		12.0	-	
RT RR			0 0		0	_	4 I		07		12.0		12.C		12.
лп		0	U		U		о:	12. 12.			12.0 12.0		12.0 12.0		12. 12.
							:	12.			12.0		ں.≞۔ کی⊇۔ 2		16. 12.
								·					• • ـــا ند ــــــــــــــــــــــــــــــــــــ	·	م بیترد بد 
								арлиятма							
								BUSES	FHF	i	PEDS		D. BUT.		. TYP
								Nb	سريم م				៣ ដំ <del>ខ</del> ា		
EB WB		0.00	) <u> </u>	8.00		N. N	0	Ŭ Ŭ	0.95		50	N N			Ξ
NB -		0.00	ים א ג ד	s. 00 s. 00		EN Ni	ő	0	0.95 0.95 0.95		30 50	N N			3 3
SE.		0.00		6.00		in N	Ŭ	0 0	0.95		50	N	14.	-	ت S
		<b>F</b> 2		re- c i i	. <del></del> .		51(	BNAL SET	TINGS		-		YCLELE		
ΞB	L7	-4		÷-'}-		t'H	J	₽:::-4	NB		j	H-1	Ph-2	PH-3	문
L À'	тн								1940 LAID	TH					
	RT									RT				•	
	₽D									PD					
WΒ	LT		Х						SB	LT					
	TH		Х							TH		х			
	RT									RT		Х			
	PD									PD					
							L	EVEL OF	SERV	ICE					
	LA	INE G	RP.	V/	С	6	3/C	DEL	.ey	LC	s	APP.	DELAY	APP	. LOS
ΨB		L		o <b>.</b> 8			.644		i.2	C	2	1	0.1		E
		T		0.4			644			ľ					
SB		TR		0.4	03	Ο.	. 289	16	. 7	0	2	1	6.7		С

	*** 1NT ARE ANA	MARY REP( ******** ERSECTIO A TYPE LYST E.	******* N. I-4 . DTHE	E.B R	. OF						****	*****	*****	*****	***
) F	TIM	E	A.M.	ΡE	AK F			WH CO	NNEC" D	іх 				· <b></b>	
			VULUME			:					G	EDMETRY			
	<del>.</del>	EB				3B :			<b>.</b>		WB		NB		SE
$\langle \rangle$	_î ƳH	0	0	0	31	± گ		12.					12.0		
]	: H 83	659 283	0	0	- i *	Hia I	ίX	1.55 * -2	.u .u				12.0 12.0		
	28	0	Ö	0 10		، ب ن			.0				12.0 12.0		12.0
	,	*	~	~·					.0		12.0		12.0		12.0
J						:		12.			12.0		12.0		12.0
j													·····		
		GRADE	нν		oni	nue			ENT FAU			en et an	BUT.	000	7" \ / 7" ("
<b></b>			(%)			Nm		NP	PHF	•	EDS	YZN		HKK.	: YHE
· .	EB	0.00							0.95				14.3		E
· [	WB	0,00											14.3		3
	NB	0.00													ں ک
÷	SB	0.00				Ō			0.95			N			3
													· · · · · · · · · · · · · · · · · · ·		
·*		Ð	4—1 F	التربيب إسراد	c				TTINGS		Di		LE LENG H-2 F		
• >	ΞB		• • •		-				NB	LT	1,		., – .		1 1 1 - 1
ł		Тн	х				•			ТH					
1		RT	Х							RT			,		
ł		PD								ΡÐ					
•	WE	LT							SB	ĹΥ		Х			
}		Тн								ΤН		Х			
.,		RT								RT					
		다. 								PD					
- F							LE	VEL O	F SERV	ICE			· · · · · · · · · · · · · · · · · · ·		
3		LANE G	₹₽. V	70		G/C					ວຣ	APP. D	ELAY	APP.	LOS
	ΞB	TR	о.	692	(	. 44	4	1	3.6	I	3	13.	8		В
}	SB	LT	о.	672	C	. 48	9	1	1.7	ł	<b>b</b>	11.	7		в
1		ERSECTION					·	 5 (						· · · · · · · · · · · · · · · · · · ·	
:	T 1/1	ERACUIU	N 1	ne	тчу	****	15.	J (50)	-/ven/	```	// =	ು. ಅರಿದ	LUE	) - 5	

•

.

-

. .

ANA	A TYPE,				-   14	AWb/1	4TH	STREE	יר					
	ALYST													
	E	4/	12/89											
	1E 1MENT					ສາກຕາມເຮ	i		ם					
		•••••												
	r*= 1=,	VOLU			1						EOMETRY			<i></i> -
LT	EB O	WB O			58 : 	ī	EB			WB 12.0		NB 12.0	LT	SB 12.
ТН						ŤR				12.0		12.0		12.
RT	346	ŏ	ŏ		o :	11	12			12.0		12.0		12.
RR	<u>.</u>	õ	õ		0:		1			12.0		12.0		12.
							12,			12.0		12.0		12.
					:		12.	Ō		12.0		16.0		12.
	· · · · · · · · · · · · · · · · · · ·					ADJU	STME	NT FA	 C1'09	 २5				
	GRADE	E H	2	ADJ	PKG	BUS	ES	PHF	F	EDS	PED.	BUT.	ARR.	TYP
	(%)			Y/N	Nm	N					ΥΖŇ			
ĒB	0.00				Q			0.95			N	11.5		3
WE	0.00				Ó		0	0.95			N	11.5		Ξ
NB SB	0.00			N N	0		0 0	0.95		50 50	N	8.5		ž
	0.00				·			0.95		50	N 	8.5		3
	-	511 X	<b>F</b> .(1.) (F)					TINGS		<b></b>		LE LENG		
EB	۲ LT	PH−1	PH-2		'H−,≾	PH	-4	NB	1 <b>*</b> *	H'H	-1 P	H-2 P	' <del>H</del> 3	PH-
	TH	х						IN ED	TH					
	RT	x							RT					
	PD	,.							PD					
WB	LT							SB	LT		X			
	ТН				•				ĩн		Х			
	RT								RT					
****	PD								FD					
						LEVE		SERV:	ICE					
	LANE G						DEL			)S		ELAY		
EB SB	TR		. 769				13		E		13.		1	
	L	(	).539	0	. 444	÷	14	.5	Ē	3	13.4	6		B

. .

.

ŀ

ANA DAT	A TYPE Lyst E	4/12/8		PERIO	)					
	MENT.					INECTO		EDMETRY		g ,
LT Th RT RR	901	VB25425 WB NE 0 0 0 458 0 846 0 0	8 51 5 ( 5 ( 5 (	2 : 2 : L1 2 : T 2 : 2 :		0 0 0	WB 12.0	T FR R	NB 12.0	53 12. 12. 12. 12.
وروب وروب				1	12. 12.		12.0 12.0		12.0 12.0	12. 12.
	GRADE		ADJ F Yzn		JUSTME SUSES NB	NT FAG PHF		PED. Y/N		HRR. TYP
ΞB	0.00	3.00	N	0	0			N	14.3	Ē
ME NB	0.00		N		C O	0.95 0.95			14.3 11.3	3 3
ne Se	0,00 0,00		N N		0	0.95	50 50		11.3 11.3	د 3
		PH-	 -2 PH		AL SET	TINGS			le leng H-2 p	: н = 90. н-з РН-
ΞB	LT TH RT PD	X X				NB	LT TH RT PD	X X		
WE	LT TH RT PD					SB	LT TH RT PD			
					EVEL OF	SERV				
EB NB	LANE GF LT TR R	0.69 0.54	o o.	444 489	DEL 13 10 13	.7 .6	LOS B B B	APP. 6 13. 11.	7	APP, LOS B B
INT	ERSECTION	 N: I	elay =	: 12.	7 (sec	/ven)	V/C =	0.709	LDS	i = B

•

.

 SUM *** ARE ANA DAT TIM	5 HCM: SI MARY REPO ********* ERSECTION A TYPE LYST E	RT ********** 1-4 E.B 0THER GSR 4/12/89 P.M. PE	INTERSEC ********* . ON-RAMP AK HOUR	TIONS ************* P/15TH STREET TOWN CONNECTO		*****	<del>****</del> ***	<del>`******</del> *
TH	EB 88 1101 0		SB : 0 : L 0 : 1 0 : 0 :	T 12.0 T 12.0 12.0	WB 12.0	T TR R	NB 12.0 12.0 12.0 12.0 12.0 12.0	SB 12.0 12.0 12.0 12.0 12.0 12.0 12.0
eb Nb Sb	(%) 0.00 0.00	3.00	ADJ PKG Y/N Nm N O N O N O		PEDS 50 50 50	YZN N N N	min T	ARR. TYPE 3 3 3 3 3
EB WB	LT .	−i PH-2 X X		NB				ΠΉ = 90.0 Ή-3 _. ΡΗ-4
EB NB INT	LANE GRI LT TR R ERSECTION	0.534 0.869	G/C 0.433 0.500 0.500	18.3 10.1	LOS C B C	18.3 14.0	3 ) 	APP. LOS C B

L

•

- -

ANA DAT TIM	LYST E	4 A	SR /12/89 .M. PE	AK I				P)				
	P(EIN)			1 H I		TOWN COM		•				
	EB		UMES NB	ę	: 38 :	ËB		WB	GEOMETRY	r NB		SB
ĻΤ	-0		346		0:	12.	0 7	12.	οL	12.0		12.
ТH	Õ	1795	163		0:	12.	O T	12.	0 T 0 T	12.0		12.
RT	, Õ	341	÷ O		0:	12.	0 Y	R 12.	0 ï	12.0		÷ĉ.
RR	0	Ō	0		0 :	12.	Û.	12.	0	12.0		12.
					:		O .	12.		12.0		12.
					: 	12.	. 0	12.	0 	12.0		12.
						ADJUSTME						
	GRAI		HV	ADJ	PKG	BUSES	PHF	PEDS	PED.		ARR.	ΤYΡ
	( / )			Y/N	Nm	Nb				กว่าๆ ไ		_
EB	0.0		.00			0				14.3		3
WB NE	0.0		.00		Ō	Ŭ O		50	N	14.3		3
NB SB	0.0		.00		0		0.95		N			3
	0.0		.00	N 		0 0	0.95		N	14.3	) - محمد محمد محمد محمد م	ద 
						GNAL SET	TINGS		CYC			
: <b>:</b>	. =-	PH-1	PH-2	F	₽H-3	PH-4			PH-1 P	H-S F	H-3	PH-
EB	L.I TH						NB		X X			
	RT							TH RT	~			
	PD .					at		PD				
WB	LT						SB	LT				
	тн	x						TH				
	RT	X						RT				
	PD							FD				
						LEVEL OF	SERV					
	LANE	GRP.	V/C					LOS	APP. D	ELAY	APP.	LOS
WB	TF	κ.	0.912	C	). 522	15	i <b>.</b> 9	С		9	(	
NB	L		0.526				5.7	C	14.	<b>O</b>	1	B
	Т		0.124	(	). 411	10	0.6	в				
											, ,	

·

•

.

•

Contraction of the second second second second second second second second second second second second second s

.

•

INT ARE ANA DAT TIM	******** ERSECTIC A TYPE. LYST E MENT	3N1-4 OTH GSF 4/1	+ W.B.  ER    2/89  . PEA	OFF-RAM	P/15TH	STREE	r	*****	*****	*****	÷★★★
LT TH RT RR			1ES NB 283 199 0 0	5B: 0: 0: 0: 0: 0:	EB 12. 12. 12. 12. 12. 12. 12.	0 T 0 T 0 T 0 0	12.	0	NB 12.0 12.0		SB 12. 12. 12. 12. 12. 12.
EB WB NB SB	GRADE (%) 0.00 0.00 0.00 0.00	(%) 3.0 3.0 3.0 3.0	۲۷ ۸ 00 ۸ 00 ۸ 00	DJPKG /NNM IO IO IO	DJUSTME BUSES Nb O O O O	NT FAC PHF 0.95 0.95 0.95 0.95	PEDS	Y/N N N	. BUT. min T 14.3 14.3 14.3 14.3		TYF 3 3 3 3
EB WB	F LT TH RT PD LT TH RT PD	'H1 .X X	PH-2		NAL SET PH-4	TINGS NB SB	LT TH RT PD LT TH RT PD		CLE LENO PH-2 f	3TH = 3H-3	
WB NB	LANE G TR L T ERSECTIO	C C 	). 747 ). 430 ). 151	G/C 0.522 0.411 0.411	14 10	.AY 6 7 8	LOS B B B	APP. 11 13 = 0.607	.6 .0		LOS B B

.

· - { .

. .

: ____ ••••

•..

*** INT ARE ANA DAT TIM	**** ERSE A TY LYS1 E	CTIO /PE	**** N I 0 6	-4 W. I Ther	3. Of 9 EAK H	N-RAI 10UR	4 <b>P/CO</b>	_UMBL	is dr	IVE	****	****	***	*****	****	·****
				UMES	و بيند بنده بيند و				وي وي حيني ويتبير مريد م		 G	EOME	TRY	· · · · · · · · · · · · · · · · · · ·		
	E	B	WB	NB	· g	5B :		EB			พв _			NB		SB
LT	-	0	5	1452	-	0:		12.0	) L'	т	12.0	L		12.0	Т	12.0
ТН				139	38	31 :		12.0			12.0	L		12.0	TR	12.0
RT		ō	ō			19 :		12.0			12.0	Т	•	12.0	R	12.0
RR		ō	ŏ	ŏ	•	0 :		12.0			12.0			12.0		12.0
		-	•	-				12.0			12.0			12.0		12.0
						1		12.0	)		12.0			12.0		12.0
		سبر نعنا شنا قلا ل	ز مست خدین منتخر درمند		از داده بین بری بر		ADJU		IT FA	CTOR	 RS	سا خدا خده سه			کار کارو خانین خدین خدید. هم	
	6	RADE		HV	ADJ	PKG	BUS		PHF		EDS	P	ED.	BUT.	ARR.	TYPE
	-	(%)		×)	Y/N	Nm	N					Y/	N	min T		
EB		0.00	-	.00	N	0			0.95		50	N	ł	25.8		3
WB		0.00		. 00	N	0	(	2	0.95		50	N	l –	25.8		3
NB		0.00		.00	N	0	(	>	0.95		50	N		14.3		3
SB		0.00		. 00	N	0	(	2	0.95		50	N	l	14.3		3
			، هنگ همهٔ هنت خصر			 S:	IGNAL	SETT	INGS		سنة ليبة نطل ينبنا ه		CYC		 GTH =	90.0
		P	H-1	PH-2	2 F	₽Н-З	PH	-4			P	H-1	P	H-5	PH-3	PH-4
EB	LT								NB	LT		Х				
	ΤН									TH		X				
	RT									RT						
	PD									PD						
WB	LT		Х						SB	LT						
	TH		X							TH				X		
	RT									RT				Х		
	PD									PD						
								_ OF	SERV							
	LP		RP.	V/C		G/C		DELF						ELAY		
WB		LT		0.936		). 261		30.		E			30.			D
NB		L		0.984					8	I			28.	9		D
		Т		0.165				_7.	9	E				-		_
SB		TR		0.891				36.		I			35.	Q		D
		R		0.100	) (	D. 133	3	- 22.	1	0	2					

-

.

and the second second second second second second second second second second second second second second second

а. - ] .

1- | | |

-

- 1 _}}

. 1 . |

*** INT ARE ANA DAT TIM	MARY RE ******* ERSECTI A TYPE LYST E MENT	(**** ON	******* I-4 W.1 OTHER GSR 4/12/89 P.M. PE	3. ON-1 9 EAK HOI	ramp Jr	/COLUM	BUS DR	IVE	****	*****	<del>*****</del>	****	****
TH RT	EB 0 0 0	WB 5 651 0	. 113 0	0 466 15	: : :	12 12 12 12	.0 L .0 T .0 .0	T	WB 12.0 12.0 12.0 12.0 12.0	L T	NB 12.0 12.0 12.0 12.0	T TR R	12. 12.
WB NB			(%) 3.00 3.00 3.00	Y/N ř N N N	(G) Nm O O O	Nb 0 0	PHF 0.95 0.95	PI	EDS 50 50 50	Y/N N N N	BUT. min T 25.8 25.8 14.3 14.3		TYP 3 3 3 3 3
EB WB	LT TH RT PD LT	PH-1 X X	₽H−2	: РН-		NAL SE ⁻ PH-4		LT TH RT PD	Pł	-1 ₽ X	LE LENG H-2 F	9TH = 9H-3	90. PH
	LT L T TR		0.801 0.906 0.151	0.2	C 256 44 44	2: 2: 24 24	_AY 3.4 3.8 9.6 4.0	L09 C C B C	3	APP. D 23. 22. 26.	6		LOS C C D

.

•

· ·

. }

•

......

•

. . |

-

.

.

•

. ...

. -

	7 tudi	<b></b>	in in a	aa ta di	state	. 1 - 3	Server and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	· <u>-</u> ·	à.	÷			
		5 HCM: S MARY REP		ZED 1	NTER	SEC.	TIONS						
	***	*****	*****		•- •- •- •-					******	*****	*****	*****
		ERSECTIO			UFF-	-KHL	9P/CULL	IMBUS L	DRIVE				
. }		LYST		2/89									
1	TIM	E	A.M	. PEA									
:	COM	MENT	2010	0 WIT	H CR(	)SS1	rown cc		)R 	، حال میں عال کی مند علم دائر ہ			
1		ED			OD	•	P** 17			GEOMETR			<b>C</b> D
	1 T	EB 15	WB O	NB	SB		LT 12		WB 12	от	NB 12 O	L	SB 12.0
		651					r 12			O T		Ť	12.0
	RT						R 12			O TR		Ť	
ļ	RR	40	0	0	0	: F	R 12		12.	0	12.0		12.0
						2	12				12.0		12.0
``			ه جه هه جه جه بخ			:	12 	. 0	12.	0	12.0		12.0
							DJUSTM	ENT FA					
·.•		GRADE						PHF	PEDS		BUT.	ARR.	TYPE
	<b>m</b> m	(%)				lui	Nb			Y/N	min T		-
	EB WB		3.00 3.00		N N			0.95	50 50	∣ N ∣ N	20.5 20.5		3 3
	NB		3.00		N	ŏ		0.95			14.5		3
	SB	0.00			N		ō	0.95			14.5		3
			ی من خن خن می <b>ای</b> م			SIG	NAL SE	TTINGS		CYC	CLE LENG	 3TH =	90.0
:		PI	H-1 F	PH-2		-3						×H−3	
	EB		X					NB					
i		TH	X						TH	X			
· . :		RT PD	x						rt PD	X			
	WB							SB	LT		x		
		TH						00	ТН		x		
l		RT							RT				
		PD							PD		_		
						L	EVEL O	F SERV	ICE				
- ]		LANE GI		//C	G/			LAY	LOS	APP. I		APP.	
	EB	LT		815	0.2			3.8	C	12.	6		В
i	NB	R TR			0.6			6.1 5 /	B	4 <del></del>	<i>k</i>		<b>-</b>
	SB			792 503				5.4 4.8	C C	15. 21.			C C
		Ť			0.2			9.4	C	G. 1 .	5		<b>U</b>
	INT	ERSECTION		Dela	ay =	14	.7 (se	c/veh)	V/C	= <del>1.030</del> 0.730	LOS	6 = B	

۰.

*** INT ARE ANA DAT TIM	MARY REP ******** ERSECTIO A TYPE. LYST E MENT	**** N I 0 6 4 P	-4 E.I THER SR /12/89 .M. PE	3. OF 9 5AK F	F-R PERI	AMP/	COLUM	ibus d	RIVE		****	****	****	*****	****
			UMES		:						EOMET				<b>~</b> 5
	EB	WB	NB	5	5B :		EB	~		WB			IB O O	L	SB
	19	0	0	50	28 :		12.	0							
IH DT	19 795	0 Â	1286	2:	08 I	1	12.	0		12.0	T	1	2.0	1 **	12.0
K I 🖓	1432	v	3		0 :	ĸ	12. 12.	0		12.0	I R		2.0	Ť	12.0
RR	40	0	0			R				12.0		1	2.0		12.0
					:		12.	-		12.0			2.0		12.0
	ر جمع جده محد محد منه منت شد				:		12.			12.0		T 	2.0		12.(
								NT FA							
	GRADE							PHF	P	EDS				ARR.	TYP
	(%)	C	%)	Y/N	Nm	1	Nb				Y/N	<b>10</b> 1	in T		
EB	0.00	3	.00	N	0		0	0.95		50	N		25.8		3
WB	0.00	3	.00	N	0		0	0.95		50	N		25.8		3
NB	0.00	3	. 00	N	0		0	0.95		50	N		17.3		3
SB	(%) 0.00 0.00 0.00 0.00	3	.00	Ν	Ó		0	0.95		50	N		17.3		3
					S	IGNAI	_ SET	TINGS			 C	YCLE		 ЭТН =	90.(
	PI	H-1	PH-a	? F	H-3	Pi	-1-4			P	H-1	PH-	-S F	°НЗ	PH-4
EB	LT	X						NB	L.T						
	тн	X							ΤН		Х				
	RT	х							RT		X				
	PD								PD						
WB	LT							SB	LT			X	•		
	TH							•	TH			X			
	RT								ŔΤ						
	PD								PD						
						LEVI	EL OF	SERV	ICE						
	LANE GI	RP.	V/C		G/C			AY	LO	S	APP.	DEL	.AY	APP.	LOS
EB	LT		0.764		. 33	3		. 1	C			4.1			в
	R		0.880		. 667			.2	В						
NB	TR		0.843		. 333			.3	С		2	0.3		I	C
SB	L		0.557		. 233			. 4	C			1.2			C
	Т		0.345		. 233			.7	С						
INT	ERSECTION	 N :	De	lay	= ;	17.0	(sec	/veh)	v	/C =	1-18	 3	L.09	3 = C	

.

•

•

.

:

-

. }

-

. ]

. .

. }

; ; ,...}

INT ARE ANA DAT TIM	ERSECTIO A TYPE. LYST E	N I C C 4	-4 E.E )THER )SR +/12/89 }.M. PE	а. О ак	N-RA HOUR	4F) /	50TH 9	STREET	(ນ. 9					
	IMENT			. 1 H 								 ,		
	EB		LUMES NB		SB :		EB			ы ЫЭ	EDMETRY	NB		SB
LT	651											12.0	Ł.	ic.
TH	170											12.0		iż.
RT					0 :			Ŏ.		12.0		12.0		12.
RR	0	Ō	20		Õ :		12.	Q.		12.0	R	12.O	T	12.
					×		12.	0		12.0		12.0		iż.
							12.	0		12.0		12.0		12.
	·					AD	JUSTME	INT FA	CTOF	25				
	GRADE		HV	ADJ	PKG	E	USES	FHF	F	PEDS	PED.	BUT.	ARR.	TYP
	(%)			ΥZΝ								min T		
ΞB	0.00				Q							31.8		3
WB	0.00				0							31.8		3
NB	0.00			N				0.95				14.3		3 3
SB	0.00	ک 	s. 00 	N	ن 		Q	0.35		50	Ni	14.3		ت 
	-						AL SET	TINGS				LE LENG		
		-	PH-8	-	PH-3		PH-4	N 177.		Fi	4-1 F	H- <u>H</u> -F	(m-3	F-H
ΞB	LT TH	X X						NB	TH			x		
	RI	x							RT			x		
	PD	~							PD					
WB	LT							SB	LT		Х			
	ТН								ТH		х	Х		
	RT								RT					
	PD								-FD					
					•	LE	VEL OF	SERV	ICE			_	_	
	LANE G				G/C		DEL	-AY		15		ELAY		
ΞB	L		0.756								29.	8		D
5.1 <b>7</b> 7			0.346								e 170	2		С
NB	T P		0.896 0.463								23.	ت		L-
SB	к L		0.463								12.	6		E
الله ال							11				<u> </u>	-		<b></b>

INT ARE ANA DAT TIM	********** ERSECTION A TYPE LYST E E MENT	NI-4 E. OTHER GSR 4/12/6 P.M. F	В. ON- 99 ЕАК НО	RAMP/ UR	50TH 9	TREET	(U.S. 41		******	****	•
LT TH RT	EB	VOLUMES WB NE 0 ( 0 2096 0 362	5 SB 195 1898	: : : L : L : TR	EB 12. 12. 12. 12.		6 WB 12.0 12.0 12.0 12.0 12.0	T T R	NB 12.0 12.0 12.0	T T T	12
NB	(%)	3.00	YZN N N	KG B Nm O O O	USES Nb O O O	PHF 0.95 0.95 0.95	50 50 50	Y/N N N N	min T 26.5 26.5 11.5		TY 3 3 3 3 3
EB		H−1 F+H- X X X	2 PH			TINGS NB SB	P LT TH RT PD	CYC H-1 P X X			
EB	LANE GF L TR	4 0. 1 0.	/C 308 308			LOS D	APP. D 33.			LC D	
NB SB	T R L T	0.52 0.66	6 0. 1 0. 5 0. 4 0.	458 183	15.4		D C D B	29. 11.	D		

•

•

.

•

.

. . . . . .

INT	ERSECTI	ON	I-4 W.E			******* MP/SOTH			••••••		******	*****	****
ANF	A TYPE. LYST		GSR										
TIN			A.M. PE	AK I		TOWN CO	NETT	סר					
			LUMES						 G	EDMETRY		u a a-	
		WB	NB			EB			WB		NB		SB
LT	0					12.					12.0		
TH RT	0				53 :	12.				Т		T	
₹1 ₹R		195 20			95 : 0 :	12.				T T		TR	12. ·
11	v	ĒŪ	U		· ·	12. 12.			12.0		12.0	R	
	х. 				:	12.			12.0		12.0		12.( 12.(
	چیچ ہیں سے جی جانہ جے تھے ا					ADJUSTME			 S				
	GRAD	E	ΗV	ADJ		BUSES		p P		PED.	BUT.	ARR.	TYP
	(%)		(%)	Y/N	Nm	NЬ				Y/N	min T		
В		ю 3				0	0.95	i i	50	N	26.5		З
IB	0.0		3.00		O	-	0.95		50 j	N	26.5		3
B		0 3			0		0.95		50	N	11.5		3
5B	0.0	0 3 	3.00	N	0 	0	0.95		50	N	11.5		3
				_		SNAL SET					LE LENG	TH =	120.0
EB	LT	PH-1	만님~은	F	эн-з	PH−4			, Fi		H-2 P	H-3	FH-
-0	LI TH						NB	LT TH		X X	v		
	RT							RT		^	X		
	PD							FD					
ЛB	LT	х					SB	LT					
	тн	X						ĩн			Х		
	RT	X						RT			X		
	₽D 					بي وردور مسرم مست مستد الشاه شاه الله		PD 					
	LANE	GRP	V/C		L G/C	EVEL OF		ICE LO	<b>e</b>	APP. D	FLOY	App	inc
٨B	L L		0.788	ć	).258			ם		нгг. D 31.		APP.	D
	LT		0.574		. 258		.2	Ď		~~* *	•		a
	R		0.473		. 258		.9	Ē					
B	L		0.575		. 150		<b>3.</b> 4	D		10.	5		в
<b>4</b> May 1	_		A 750		.667	c	. 9	в					
B	T TR		0.735 0.946		).517		. 7	Ē					

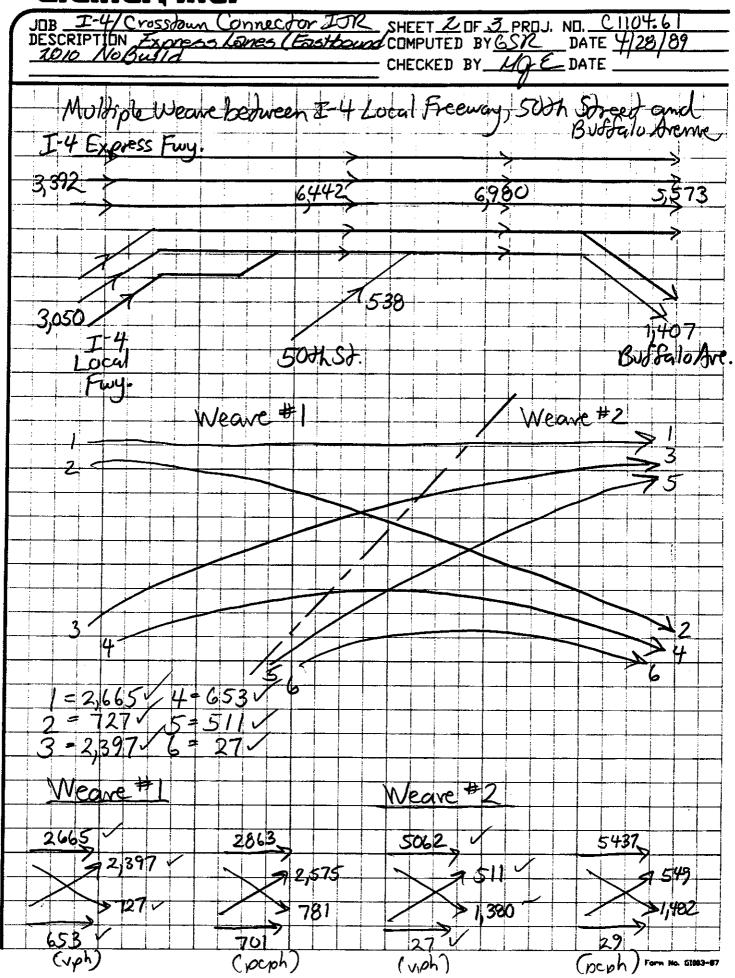
: }

SUM *** INT ARE ANE DAT TIM	1MAR) 12858 12871 1287 1287 1287 1287 1287 1287 12	Y REF ***** ECTIC YPE T	ORT	I-4 W.I DTHER	*** <b>*</b> 3. C 3	***** 76684	****** MF/501	н бт	REE	******* T(U.S. 4 R	• <del>*****</del> **	** <del>****</del> **	****	*****
⊥T TH RT RR		-	WB 296 170 160	2753	17 6		1; 1; 1; 1;		L L R	WB 12.0 12.0 12.0 12.0		NB 12.0 12.0 12.0	יר ר אד	12.0
SB WB NB BB		GRADE (%) 0.00 0.00 0.00 0.00		8.00	Y/N N N	PKG Nm	NB 0 0 0	0 0 0	PHF 95		N N	min T 26.3 28.5 11.5		TYPE 3 3 3 3
₩B	LT TH RT PD LT TH RT PD	P	H−1 X X X	₽HΞ	<u>,</u>	SI( PH-3	JNAL SE PH-4	.	NGS NB SB			LE LENG H-2 F X X X	57H = 9n-3	
WB NB SB	LA	INE G LT R L T TR R	RP.	V/C 0.588 0.428 0.345 0.368 0.946 0.889 0.909		6/C 0.283 0.283 0.283 0.192 0.633 0.450 0.450	2 2 3 1 . 2	DF Si ELAY 29.5 23.0 22.2 32.4 17.2 22.4 29.7	ERVI		APP. D 25. 17. 24.	8		LOS D C C
INT	ERSE	CTIO	N :	De	lay	= 21	. 1 (se	20/10	≥h)	V/C =	0.828	LOS	5 = C	. <u></u>

•

•

.


•

, ,

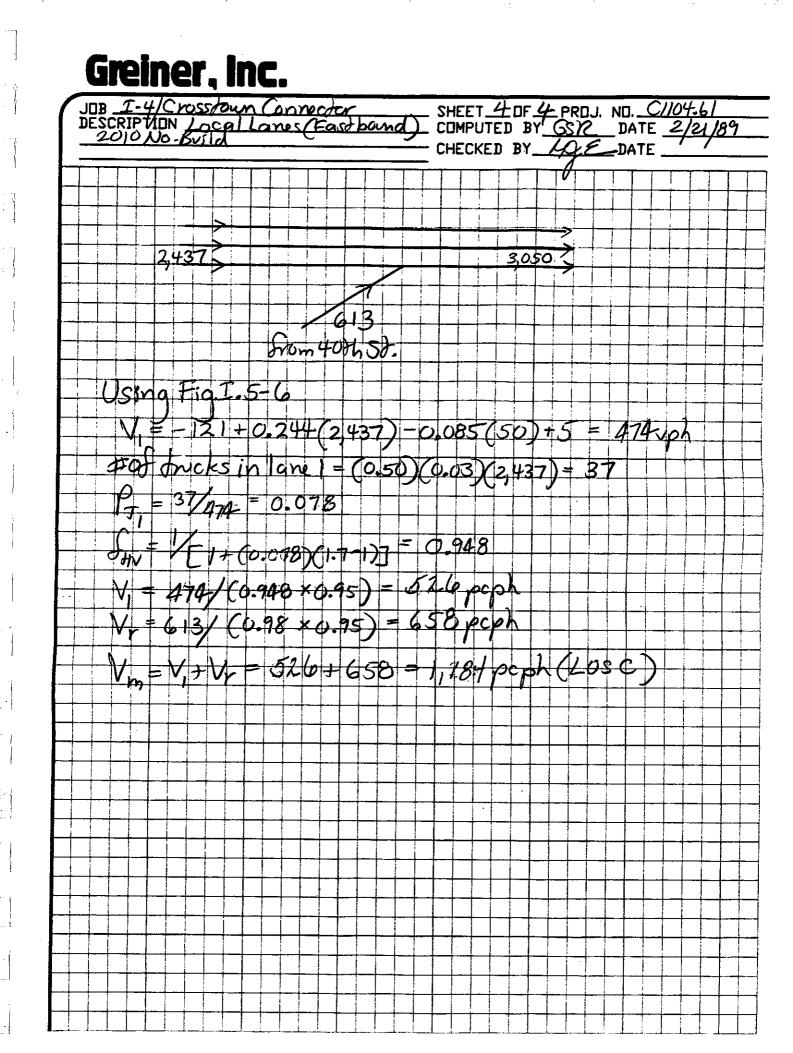
#### APPENDIX F

#### DESIGN YEAR (2010) NO-BUILD CAPACITY ANALYSES

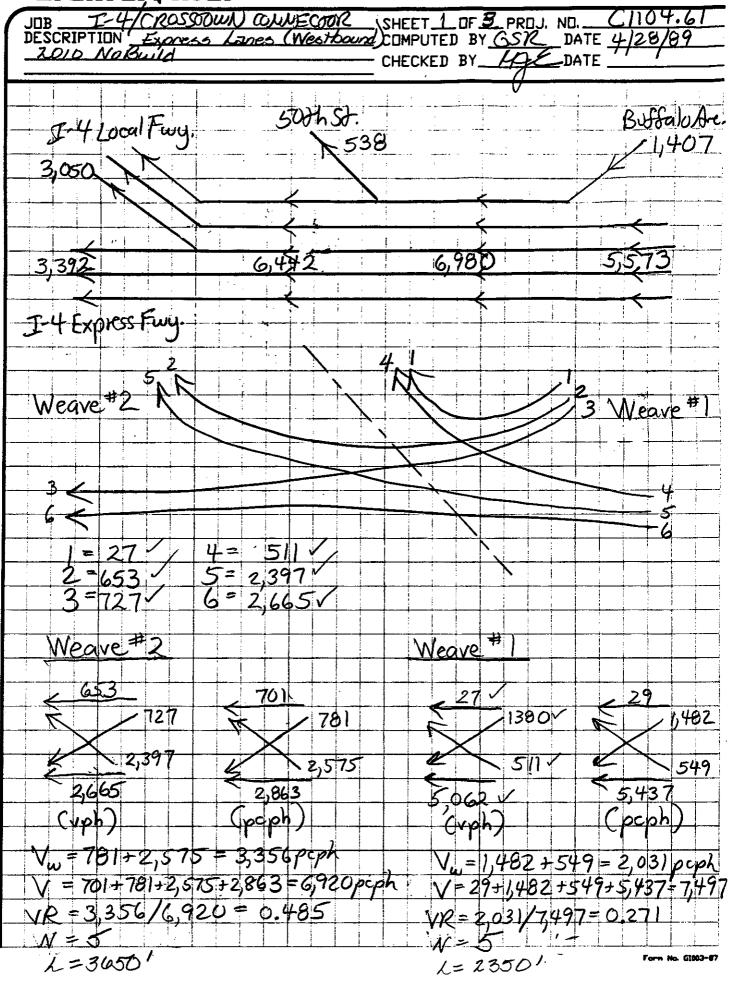
Greiner, Inc. JOB I 4/ Crosstow Connector Connector SHEET OF 3 PROJ. NO. _______ Lanes (Eastband COMPUTED BY GSR_ DATE ____2 DESCRIPTION Express CHECKED BY HOFF DATE Srom I-275 Express Fury (SB) 1,698 6386 rom I-275 Express Fuy, CNB 4,688 3,042 AB9 → 955  $V_{w} = 3,506 \text{ pcph}$ to I-4 Loca 2,435 > 2,637 6,859 peph 809 -> 869 -= 0.51 2,233 -> 2,398 N = 4 L = 2980 TPE A WEAVE (CONSORDINED Swe 15+ 1+ (0,2B) (1.511)^{2,2} (6,859/4)^{1,0} (2980)0.9 15+ ົກພ (0.02)(1.511) 4,96,859/4)0.88/ 2980 0.6 1. 71 5w = 41.46 mp 1051 . -ہار ۔ 5NW = - 46.21 mpl 1051 No. G1003 -



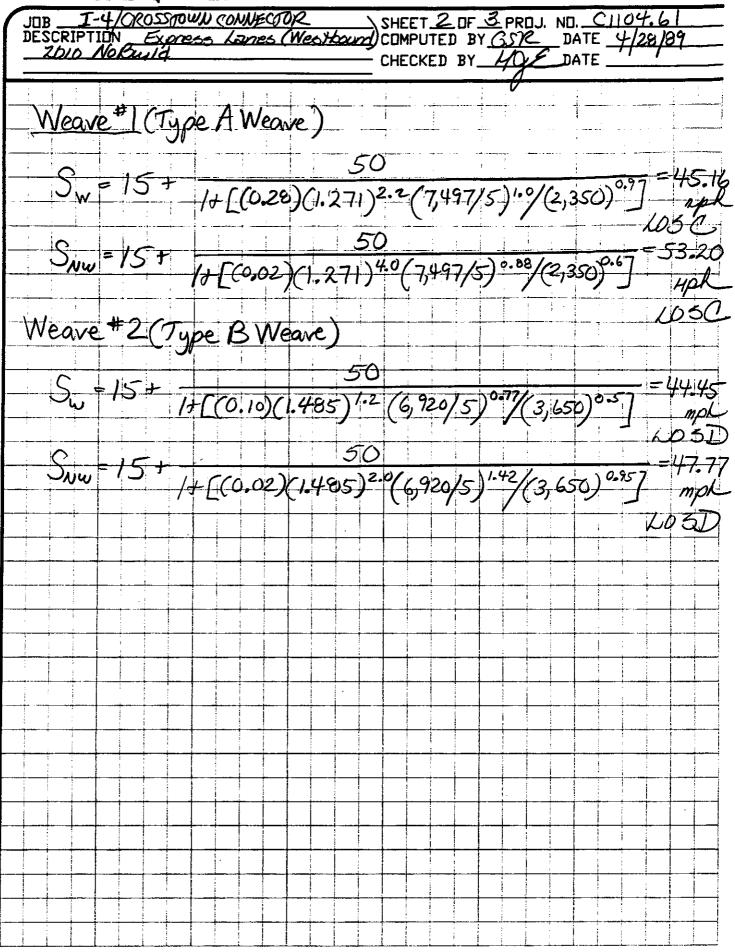
SHEET 3 OF 3 PROJ. NO. C1104.61 Crosstown Connector DESCRIPTION Expers (Eastbourd) COMPUTED BY (SR DATE 4/28/89 Lanes DATE CHECKED BY 4 Weave #1 (Type B) V., = 2,575+781 = 3,356pcph V = 2,863 + 2,575 + 78 1 + 701 = 6,920 pcph VR = 3,356/6,920 = 0.485 = 3,350-S.,= 15+ = 43.93mph (LOSD) 1+ (0.10) (1.485) 1.2 (6,920/5) 0.77/(3,350) 0.5  $7 = (0.02)(1.485)^{2.0}(6,920/5)^{1.42}(3,350)^{0.95} = 46.84 \text{ mph}$ 15 + Neave #2 (Jupe B  $V_{u_{2}} = 549 + 1482 = 2,031 pcph$ V = 5,437 + 549 + 1,482 + 29 = 7,497 pcphVR = 2,031/7,497 = 0.271 N=5-= 2950 5w 15 44.60mph /+ [(0.10)(1-271)"2 (7,497/5)°-77/(2950)05 (LOSD SNU 15 7 47.72mp (0.02×1.271)^{2.0}(7,497/5)142/(2,950)0.257 LOSD


Form No. 61003-87

Greiner, Inc. SHEET __ OF # PROJ. NO. __ C/104.6. COMPUTED BY __ GS/C DATE __ 2/2/ Connector DESCRIPTION // (Easthound) CHECKED BY HE DATE 4.229 from 15ths 1,261  $\frac{126}{(0.95 \times 0.98)} = 1,354 \text{ pcph}$  (105 C) Node: the use of an add lane @ 15th was the result of the following: 4,117 2974 1,261 Using Fig. I. 5-6 +0.244(2,968,  $5 = 604_{Vph}$ # of maks in ane = (0.50)(0.03)(2.968 <u>- 45</u> K. 45/604 +0.075 950 Ο. 17[(0.075)(1.7-1)] = 669 pcph 6041 10.95×0.95 0.98× 0.95 354 <u>ALOS</u>


Form No. G1002-87

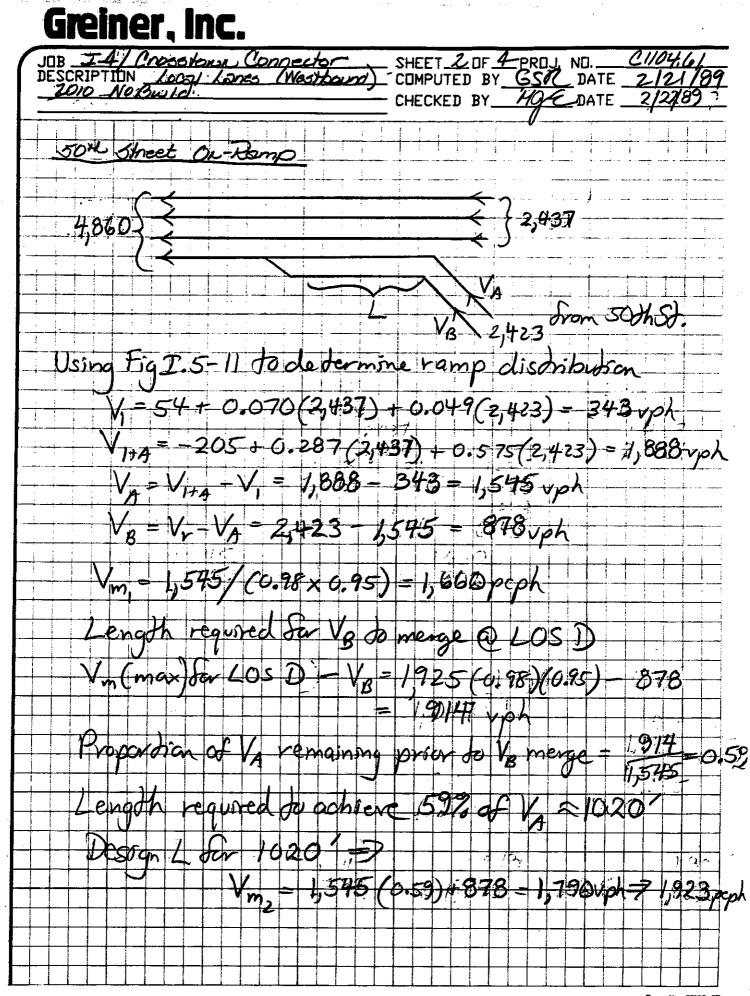
Greiner, Inc. SHEET 20F4 PROL NO. CIO4.61. COMPUTED BY GSR DATE 2/21/89 JOB <u>I-4/ Crossie</u> DESCRIPTION LOCA (Eastbound añes 2010 No Bu CHECKED BY HAE DATE from J-4 Express 3,042 2, 411 to 400h St. Fuy. 4,229 4,860 7,271 1651 1,537  $V_{w} = 1,647 \pm 1939 = 2,556$ 1.505 617 V= 5617+1,651+939+3,604 1.875 = 7,811 2,556/7,811 = 0.327 3,355 3,604 Guph 1BOO pcph Weare (Unconstrained) ype 7 5+ = (0.10) (1.327) 1-2Y 7,811/5 0.77  $\left| \mathcal{F} \right|$ (1300) = 40.60mph (105 C) 15 F (0.02)(1.327)² (7,811/5)¹⁻⁴²/(1,800)0.75 +1 40.31 mph (LDSD) 7


Greiner, Inc. JOB <u>I-4/Crosstann</u> Connector DESCRIPTION <u>LOOS/LENES (ESSTEC</u> 2010 NO Build SHEET 2 DF 4 PROJ. NO. COMPUTED BY 650 DATE C1104,6, (Eastband) 2/2/189 HOLE DATE CHECKED BY____ tosothsd. NB, 486D. > { 2437 VB=1,505vph P Left side ramp adjustment  $V_2 = (1.1)(1,305) = 1,436upt$ VA= 2,423-1,505= 918vph Ising Fig. I.S-7 = 94 + 0.23 (4870 - 1,505) + 0.473 (818) + 2 = 1,305 vph)#05 onucles in lane 3 = (0.03)(918) + (1-0.50)(0.03)(2437) = 44 = 46/1, 436 = 0.032 0.9781+ [ ( a. a32) ( 1.7-1) ] (1,436)/(0.978×0.95) 1,546 pcph (105C Ξ 1,617 pcph (105 (0.98×0.95) 1,505 No. 61002-

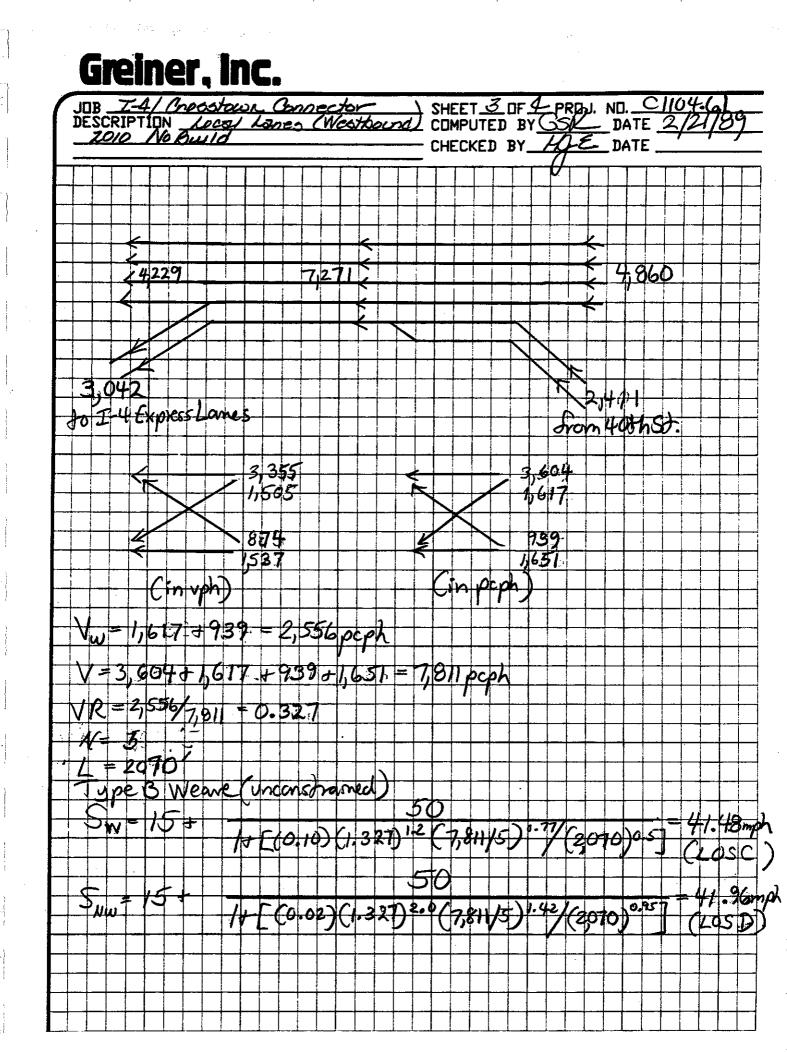







## Greiner, Inc.




Greiner, Inc. JOB <u>I-4/Crosstow</u> Connector SHEET 3 OF 3 PROJ. NO. _____ DESCRIPTION Express Lones (Westown) COMPUTED BY <u>GSR</u>DATE _____ 2/21/89 CHECKED BY MOE DATE From I-4 Local Fuy. To I-275 Express Fury. (NB) . 3,042 1,698 6,386 3,34 4,688 0 I-275 Express Fuy. (SB) <del>< 869</del> 809 Vy=2,398+955=3353pcph 2,398 2,233 V=3,353+869+2687 = 6,859 peph 689 955 VR = 3,353/6,859 = 0.489 2,637 2,455 N = 4  $L = 2,900^{1}$ (uph) (pcph) TYPE B WEAVE ( UN CONSTRAINED =15 + =40.96mpl 1+ ((0.10) (1.469) 1.2 (6,859/4) 0.77/(2,700) 0.5 (LOSD) Sale = 157 =41:43mpl (0.02)(1.489)20(6)859/4)1-42/ (2900)0.957 (LOSE) Start. 61002-

Greiner, Inc. JOB <u>I-4/ Chosotown</u> Connector DESCRIPTION <u>Local</u> Lares (Westburd) 2010 NoBuild SHEET __ DF & PROJ. NO. __ C/104. 6/ COMPUTED BY __ GSR DATE __ 2/2/ CHECKED BY HOL DATE 404 Street ORF-ramp to 400hst 613 3050 4,860 1000 2,423 Using Fig I.5-7  $V_1 = 94 + 0.231(3,050) + 0.473(613) + 2 = 1,090 \text{ ph}$ #af bucks in lane 1 = (0.48 (0.03) (3,050) = 44  $P_{T} = 44/1,090 = 0.040$ 0.973 JHV 1+ [(0.040)(1.7-1)]-1,090/ (0.973 × 0.95 179 pcph (105 C 7-11

Form No. 61002-87



No. 61002



**Greiner**, Inc. JOB <u>I-4/ Cnosstows</u> DESCRIPTION LONAL LO 2010 NOBULO Connector DF 4 PRDJ. ND. <u>C/104,6</u> BY <u>GSR</u> DATE **2/2/** SHEET 1,261 VB 4,229 2,968 Using Fig I.5-12 to determine ramp distribution V1+4 = -158 + 0.035 (4,229) + 0.567 (1,261) = 705 vph  $V_1 = 18 \pm 0.060(4,229) \pm 0.072(1,261) = 363, vph$  $V_{A} = V_{1+A} - V_{1} = 705 - 3.63 = 342v_{ph}$  $V_{B} = V_{Y} - V_{A} = 1,261 - 342 = 919, vph$ Vd = 919/(0.98×0.95) = 987 pcph Using Fig. I.5-7 V= 94+0.231(4,229-919)+0.473(342)+2=1.022vph # of Jucks in lane 1= (342)(0.03) + (0.50)(0.03)(2,968) = 55/1022 = 0.054 0,964 [(o.054)(1.7-1)]  $(0.964 \times 0.95) =$ ,116 pcph

	INT	ERSEC	TION.	.I-4 W	J. B.	0N-1	RAM	******* P/14TH S	STRE	ËT	*****					
			PE		ł											
							110									
								OSSTOWN	CON	NEC	CTOR					
				JLUMES	· <b>—</b> —-·							GEOM		· /		<del>شنة</del> سير نحب هي هي هي
		EE	B WI		B	SB	-	EB			WB			NB		SB
	LT		1828			0	:	12.	0	Ł	12.	0		12.0	Т	12. (
-	TH		) 1240			643					12.			12.0	Ť	12.0
	RT			-		121					12.			12.0	TR	
	RR	C	) (	<b>)</b>	0	0	1			Т	12.) 12.)			12.0 12.0		12.0
							1	12. 12.			12.0			12.0		12.0
		GR	ADE	HV	A	J PH		ADJUSTME BUSES		- AL IF			PED.	BUT.	ARR.	TYP
			( <b>%</b> )				im.	Nb					/N	min T		
	EB		. 00		1		0	0			50		N	14.3		3
	WB					4	0				50		N	14.3		3 3
	NB SB		.00	3.00	1 1	-	0	0	0.9		50		N N	14.3 14.3		3 3
	36 			3.00										ک نفت منت سے عند مند غدہ د	ده سه سه سه د	
			PH-1	נ הט	-2			GNAL SET PH-4	TING	S		PH-1		LE LENG H-2 P	3TH = 9H−3	
	EB	LT				FII	0	F11 7	NE	3	LT		<i>r</i> -	··· 🗠 🛛 F		F11 -
		TH									TH					
		RT		-		,					RT					
		PD	·		·						PD					
	WB	LT	X X						SE		LT	~				
		TH RT	X								TH RT	X X				
		PD									PD	^				
			ست النت سند مند خلط خط	صف هما محمد خده مله	<b></b> -		 	LEVEL OF	SER	NI N	CE					
		LAN	E GRP.	V7	C	G/	C	DEL	AY		LOS	AP	P. D	ELAY	APP.	LOS
	WB		L					10			B		7.	8		в
	~~		T			0.7					A		~-			_
	SB		TR	0.7	67	0.2	22	23	.1		C		23.	1		C

.

•

.. İ

. .

.

DA TI	ALYS TE ME	ST 	• • • • •	4/14/4 P.M. H	PEAK									
		· · · · · ·		LUMES			ROSSTOWN		NE(	ند هند هنه همه خمه معه هک ها				
		EB	WE		3	SB :	EB			WB	COME I I	NB		SB
LT			1496			0:			L	12.0	>	12.0	Т	12
TH		0	1015		) 7	85 :		.0	L	12.0		12.0		
RT			C			99 :		. 0		12.0		12.0	TR	
RR		0	C	) (	)	0:	12	. 0	т	12.0	)	12.0		12.
						:	12	• 0		12.0	)	12.0		12,
						1	12	.0		12.0	)	12.0		12.
							ADJUSTM	ENT I	FAC	TORS		ف خند دور برو بجد حد خت هن د		
				HV		PKG			HF	PEDS	PEI	). BUT.	ARR.	TYP
		(%		(%)	Y/N		Nb	·			Y/N			
EB		0.		3.00	N	0		0.9				11.5		3
WB		0.			N		_					11.5		3
NB SB		0.		3.00		0	0					14.5		3
30 		0.		3.00	N	0	0	0.9		50	N	14.5		3
					_		GNAL SE	TTIN	3S			CLE LENG		
съ	LT	,	₩ <b>-</b> 1	PH-	-2	PH-3	PH-4				H-1	PH-2 P	°H-3	PH-
СD	TH							Ni		LT				
	RT									TH RT				
	PD									PD				
WB			x					G		LT				
	TH		x							TH	X			
	RT									RT	X ·			
	PD									PD	••			
						ے میں مہر میڈ ملن	LEVEL OI	 - SEF		CE				
	L	ANE	GRP.	V/C	:	G/C	DEI	-AY		LOS	APP.	DELAY	APP.	LOS
WB		L		0.76	,O I	0.667	' 1	3.8		в		.2		
		T		0.47	5	0.667		4.8		A				
SB		T	R	0.73	4 1	0.267	' 20	5.7		C	20	.7		<b>m</b>

-

	······································	2010				ROSS	TOWN	CONNE			ه دان منه هاد اعن اختار ان	برم سب سر، سب منه خنه ا		
	EB	VOLUME WB	IS NB		: 38 :		<b>~</b> D	-			EOMETRY			~
LT	0	0	0		35 :	т	EB 12.			WB 12.0		NB 12.0	LT	SH 12
ТН	779	ŏ		. 196			12.			12.0		12.0	T	12
RT	335	ō	ŏ		<b>ō</b> :		12.			12.0		12.0	Ť	12
RR	0	Ō	ō		0:		12.			12.0		12.0	•	12
					1		12.			12.0		12.0		12
	<b>.</b>				2		12.			12.0		12.0		12
		ے دی دی ہیں ہیں جب علی ک	. <b></b> .	ی جن  بدر نام ک		ADJ	USTME	NT FA	CTOR	S	بو بی هبر عمر هم خذ ه			
	GRADE			ADJ	PKG	BL		PHF	P	EDS	PED.	BUT.	ARR.	T١
	(%)	(%)		Y/N	Nm		Nb				Y/N	min T		
EB	0.00			N	0			0.95		50	N	11.5		3
WB	0.00			N	0			0.95		50	N	11.5		3
NB SB	0.00			N	0		0	0.95		50	N	8.5		3
30 ———		3.00	, 	N	0		0	0.95		50 	N 	8.5		3
	D	H-1 F	H-a		S 9H-3		L SET H-4	TINGS				LE LENG H-2 P	1TH = H−3	
EB	LT	•• •		- 1		F	11 4	NB	ιт			יח-ב ש	-n-3	Pł
	TH	x							тн					
	RT	X							RT					
	PD								PD				•	
WB	LT							SB	LT		Х			
	тн								TH		X			
	RT								RT					
	PD				د جسب مسند منکد ک				PD					
					~ ~~	LEV	EL OF	SERV						
EB	LANE GI TR	ο. Ο.								5		ELAY 4		
			- 202			$\mathbf{P}$			μ		<b>20.</b>	4		D

-

Sector and the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the s

. . . . .

- -----

ale T

Ψ.

5 <del>20</del>1

*** INT ARE ANA DAT TIM	*** ERSE A T) LYS1 E	ECTIO	**** N I 0 0	-4 E. THER SR /17/E .M. F	в. 01 19 №ЕАК 1	=F-R 40UR	AMP,	/14TH	***** STREE CONNE	T		****	***	****	****	*****
				UMES		:						SEOMET				
	E	EB	WB	NE		SB :		EB			WB			NB		SB
LT		0	0	0		53 :		12.			12.0	)		12.0	LT	12.0
TH	95	52	0	0	160			12.			12.0			12.0		12.0
	40	9	0	0		0:		12.	. 0		12.0			12.0		12.0
RR		0	0	0	1	0:		12.	. 0		12.0			12.0	•	12.0
						:		12.	. 0		12.0	>		12.0		12.0
						2		12.	. 0		12.0	)		12.0		12.0
		ے بینہ بھی محد منٹ <del>د</del>			۔ میں میں میں جس		 0 ח ו		ENT FA							
	8	RADE	1	нν	ADJ	PKG			PHF		EDS	DE	n	BUT.	000	TYPE
		(%)		%)	Y/N	Nm		Nb	F. F 11	r	وريا	Y/N		min T	HKK	ITPE
EB		0.00	3	. 00	Ν	0		ō	0.95		50	N		11.5		3
WB		0.00	3		N	0		0	0.95		50	N		11.5		3
NB		0.00	3	. 00	N	0		0	0.95		50	N		8.5		3
SB		0.00	3.	.00	N	0		0	0.95		50	N		8.5		3
			• • • • • • •			<u></u>			TINGS	<del>سر حد حد</del> ب					· ··· ··· ··· ·	
		PH	1	PH-	e p			H-4			c	ت H-1		-2 F		90.0 PH-4
EB	LT						•		NB	LT	F			-	-л- <b>э</b>	P.U4
	TH		X							тн						
	RT		Х							RT		•				
	PD									PD						
WB	LT								SB	LT		Х				
	TH RT									TH		x				
	PD									RT						
			·							PD			-			
							LEV	EL OF	SERV	I CE						
<b></b>	LA		P.	V/C	_	G/C		DEL	.AY	LD	S	APP.	DEI	_AY	APP.	LOS
EB		18		1.02	5 O	- 4.3.7			. 5	ת		31	7.5			
SB		L T		0.81	50	. 500	)	18		C			5.8			D
		, 		1.00	0 0	. 500	,	28	. 5	D						
INTE	ERSE	CTION	:	D	elav		0.2	 (cor	/veh)	 Li	 /r -	1				
						•	~ ~ ~	, 96L	/ TEII/	¥.	, L,	1.01	-	LU5	е <b>р</b>	

.

•

•

-

.

.

{

. }

.

1

1

*** INT ARE ANA DAT TIM	MARY REF ********* ERSECTIC A TYPE LYST E MENT	N. I- DN. I- GS	-4 E.E THER SR /17/89 M. PE	9. OM 9 6 AK H	i-RAI IOUR	MP/:	ISTH	STREET			****	***	****	****	*****
			JMES		 										
	EB	WB	NB	-	B:		EB			WB	EOME	RY	N 2771		<b>~</b> ~
LT							12			WB 12.0	) т		NB 12.0		SB
TH	1218		812				12				, , , т,		12.0		12.0 12.0
RT	0		1275				12			12.0			12.0		12.0
RR	0	0	0		0:		12			12.0			12.0		12.0
					;		12			12.0			12.0		12.0
					:		12			12.0			12.0		12.0
						ADJ	USTM	ENT FA	CTOR	 S					
	GRADE	н	łV	ADJ	PKG	BU	SES	PHF	P	EDS	PE	D.	BUT.	ARR	. TYPE
	(*)	۲)		Y/N	Nm		NЬ				Y/N		min 1		
EB	0.00			N	0			0.95		50	N		11.5	5	3
WB	0.00			N				0.95		50	N		11.5	5	3
NB	0.00			N			-	0.95		50	N		11.5	5	3
SB	0.00	3. 	00	N 			0	0.95		50	N		11.5	5	3
	_							TTINGS			C	YCL	E LEN	 NGTH =	90.0
		H-1	PH-2	P	H-3	P	H-4			P	H-1	Pł	1-2	PH-3	PH-4
EB		X						NB							
	TH RT	X							TH		Х				
	PD								RT		х				
WB	LT							~~	PD						
	TH							SB	LT						
	RT								TH RT						
	PD								PD						
			····			LEV	EL OF	SERVI	 [ CE		<u>س سے درم بینیہ میں</u>				
	LANE G				G/C			.AY			APP.	DE	LAY	APP.	. LOS
EB	LT		0.813				18	3.7	C			8.7			с. С
NB	TR		0.797				11	- 1	в			2.3			в
	R		0.848	0,	. 578	i	14	- 9	В						-
INTE	ERSECTION	N ::	De	lay :	= 1	4.9	(sec	/veh)	v.	/C =	0.83	5	LC	)S = B	

•

.

•

.

· } ·

.

.

}

-

Ì

. .

***		*****	***** I-4 E.1							****	*****	*****	*****	*****
ÀRE ANA DAT	A TYPE Lyst. E	E ( 	DTHER GSR 4/17/89	Ð				1						
TIM COM	MENT.	• • • • • • • •	P.M. P 2010 W	EAK   I THO	HOUR UT CI	RD55		CONNE	CTOF	?		•		<b></b>
		. VOL	LUMES		:					GI	EOMETRY	,		
	EB	WB	NB	5	SB :		EB			WB		NB		SB
		. 0	-		0:		12			12.0		12.0		12.
TH	1488		664		0:	•	12			12.0		12.0		12.
RT	0	0			0:	T	12.			12.0		12.0		12.0
RR	0	0	0		0:		12			12.0		12.0		12.0
					:		12.			12.0		12.0		12.0
							12.	. 0		12.0		12.0		12.0
								ENT FA	стоя	RS				
		<b>ADE</b>	HV		PKG		SES	PHF	F	PEDS	PED.	BUT.	ARR.	TYPE
			(%)	Y/N	Nm		Nb				Y/N	min T		
EB			3.00	N	0			0.95			N	11.5		3
WB			3.00	N	0		0	0.95		50	N	11.5		3
NB SB			3.00	N	0		0	0.95		50		11.5		3
			3.00	N 	0		<u> </u>	0.95		50	N 	11.5	مرد منه دی ه	3
								TTINGS			CYC	LE LENG	STH =	90.0
		PH-1	PH-a	2 F	PH-3	P	H-4			PH	1-1 P	H-2 F	°H-3	PH-4
EB	LT	X						NB	LT					
	TH RT	X							TH		X			
									RT		X			
WB								05	PD					
~~	TH							SB	LT					
	RT								TH					
	PD								RT PD					
<b></b>												و چہ سنا سے سنا سے	میں سے میں این ایک <del>م</del> یں	
	LANE	GRP.	V/C		G/C		DEL	F SERV: LAY	LD LD	S	APP. D	ELAY	000	
EB	L	T	1.026	5 C	). 344		38	3.5	D		38.			D
NB	т	R	0.783	; c	. 589	)	10	.4	В		19.			Č
			1.016	· ~				5.4	D			-		-

•

•

. .

.

-

. . .

.

and the second second second second second second second second second second second second second second second

•

•

•

ARE ANA DAT TIM	A TY LYS E.	/PE.	• • • •	DT GS 4/ A.	HER IR 17/89 M. PI	9 Eak i	HOUR	2	15TH									
	MEN				10 W				TOWN 		EC 	TOR 						
		ĒB	VL WE		IMES NB		: 58		EB			ŧ	iB €	EOMET	RY	NB		SB
LT					589	i	0 :		12.		т			L		12.0		12.
TH					278		ŏ:		12.	-				T		12.0		12.
RT			567				0:		12.		Ť			Ť		12.0		12.4
RR		ō		5	ō		0:		12.	-	Ř		12.0			12.0		12.
-			-		-		:		12.				12.0			12.0		12.
-							:		12.	0		1	12.0	Ì		12.0		12.0
	• •		ه خنه هنه ملك 14					ADJI	USTME	NT F	 AC'	TORS	3		- 271- 1 2.:			
	6	SRAI	DE	Н	ĪV	ADJ	PKE	; BUS	SES	PH	F	PE	DS	PE	D.	BUT.	ARR.	TYP
		(%)	)	( /	4)	Y/N	Nn	ı l	Nb					Y/N	l	min T		
EB		0.0			00	Ν	C		0				50	N		14.3		3
WB		0.0			00			)		0.9			50			14.3		3
NB		0.0			00	N		)		0.9			50			14.3		3
SB		0.0		з. 	00	N		) -————-	<u> </u>	0.9	5		50	N		14.3		3
						_			L SET	TING	S		_			ELENG		
			PH-:	1	PH-	2	PH-3	s Pl	H-4			-	H F	-	단문	1-2 F	×H−3	PH-
EB										NB		LI TH		X X				
	TH RT											RT		<b>^</b> .				
												PD						
WB	LT									SB		L.T						
	ТН		х									TH						
	RT		X									RT						
	PD											PD						
									EL OF									
	L	ANE														ELAY		
WΒ		Т			0.99									2	20.8	3		С
					0.72									_		_		_
NB														2	28.6	5		D
		Т			0.22	5	0.38	19	11	.9		В						

.

•

.

-

.

• •

•

+ - { + - { }

-

.

.

.

.

.

ANA DAT TIM	LYST E		• • • • •	4/17/8 P.M. P	EAK		OSSTOWN		CTOD					
				LUMES		 :					EDMETR			
	E	в	WE			SB :	EB		Ŀ	1B		' NB		SB
LT		0	C			0:	12.		1		L	12.0		12.
тн		0	2030	) 339		0 :					Т			12.
RT		0	464	• •		0:			Ì			12.0		12.
RR		0	c	) 0		0:	12.	0 R	1	2.0		12.0		12.
						:	12.	0	1	2.0		12.0		12.
-						:	12.	0	1	2.0		12.0		12.
			بہ صر صد ک		، سبب منت سن عن		ADJUSTME	ENT FA	CTORS	 }				
	G	RA	DE	HV	ADJ	PKG	BUSES	PHF	PE	DS	PED.	BUT.	ARR.	TYF
		(%	)	(%)	Y/N	Nm	NЬ				Y/N			
EB		0. (	00	3.00	Ν	0	0	0.95		50	N	14.3		3
WB		0. (		3.00		0	0	0.95		50	N	14.3		3
NB		0.0	00	3.00	N	0	0	0.95		50	N	14.3		3
SB		0.0	00	3.00	N	0	0	0.95		50	N	14.3		3
						SI	GNAL SET	TINGS			CYC	CLE LENG	3TH =	90.
			PH-1	PH-2	2 1	PH-3	PH-4			PI	H-1 f	PH-2 F	¥H−3	PH-
EB	LT							NB	LT		X			
	TH								TH		X			
	RT								RT					
2 (75)	PD								PD					
WB			v					SB	LT					
	TH RT		X X						TH					
	PD		X						RT PD			,		
	— —		وی رسید جاند منت منت	و جبب حد حد خلة حك :		هیں سے جب خف نگ						بر رس سن سن منه ماه بنه ه		
	LA	NE	GRP.	V/C			LEVEL OF DEL			;	APP. I	DELAY	APP.	LOS
WB		Т		0.812	2 (	). 544	11	.9	в			5		B
		R		0.595				.7					٠	
NB		L		0.775	5 (	). 389	22	.3			18.	0	Í	С
		Т						. 2						

•

•

-

. [

. .

. . .

.....

, , , ,

· ·

SUM *** ARE ANA DAT TIM	MARY ***** ERSEC A TYF LYST. E E	REPOR ***** TION. E	******** .I-4 W.) .OTHER	****1 3. OM 9 EAK H	***** 1/0FF	****** -RAMPS/	'40TH S	TREET		*****	*****	*****	****
		V	DLUMES		;		•		GI	EOMETRY			
	EB				5B :	EE		W)			NB		SB
	0				0:		2.0 L		2.0		12.0 12.0	т т	12.0 12.0
TH RT	0	13	0 1019 5 0		06 : 74 :		2.0 L		2.0		12.0	т Т	12.0
RR	c c				30 <b>;</b>		2.0 K		2.0		12.0	R	12.0
1111	~		• •	•			.0			Ţ		R	12.0
					-		. 0		2.0		12.0		12.0
	<b></b>												
	CD	ADE	ΗV			ADJUSTM BUSES		JIURS PEI		DED	BUT.	app	TYPE
			(%)			ND	<del>1</del> . 1. 11		5	Y/N		P11/1/1	, I F E
EB					0	0	0.95	1	50		28.8		3
WB			3.00	N	ō	ō	0.95	I	50		28.8		3.
NB	Q	. 00	3.00	N	0	0	0.95		50	N	14.3		3
SB	Ó	. 00	3.00	N	0	Ô	0.95	5	50	N	14.3		З .
EB		 РН-	1 PH-2	 2 F		GNAL SE PH-4	TTINGS	LT			LE LENG H-2 F		
	TH							тн		Х	Х		
	RT						•	RT					
	PD						AND 200	PD					
WВ	LT TH	x						LT TH			x		
	RT	x						RT			x		
	FD	~	-					PD			~		
						LEVEL O							
	LAN	E GRP	. v/c							APP. D	ELAY	APP.	LOS
WB		L	0.883	3 C	. 183	4				43.			E
		R	0.514	÷ C	. 183	3	9.7	D					
NB		L	1.023	3 C	). 575	4	1.7	ㅋ		27.	1		D
		Т	0.299	э с	).742		3.3	A					_
SB		Т				4	0.9	E		33.	3		D
		R	0.764	+ C	. 350	2	4.6	C					
INT	ERSEC	TION:	De	elay	= 3	0.9 (se	c/veh)	V/I	c =	0.977	LOS	3 = D	

.

•

. .

. .

ł

-

.

•

SUM *** INT ARE ANA	MARY **** ERSE A TY LYST	/ RE **** CTI /PE.	POR1 **** ON	**** 1-4 OTHE	*** W. B R	*** • Oì	****	****		**** OTH :	**** STREI	**** ET	****	*****	****	****
TIM	E			P.M.	PE	ак н	HOUR JT CI	ROSST	"DWN	CONNI	ΞΟΤΟΙ	२				
		ی <b>ے یہ سن سن د</b>	 VC	LUME	 C											
	Ε	в			NB	. ç	58 :		EB			WB	EOMETR			<b></b>
LT		0		14			Õ :		12.			12.0	1 1	NB 12.0	т	SB 12.0
TH		0	0	12	44				12.					12.0		
RT		0	111			55	52 :							12.0		12.0
RR		0	0	)	0	3	30 :		12.					12.0		12.0
							:		12.0	0				12.0		
							1		12.0	0		12.0		12.0		12.0
<u> </u>		، برید حصر کی ہ	<u>مر</u> ب میبرد مندا خاک	بجي هيد حط خذك ا	د حندة حداد 180								سن خدة في جب حب حب			
	G	ומסקו	=	เสบ	,	ד תר	DVD	HUJU	STME		ACTOR	<u> </u>				
		(%)		(%)	۲ ۱	403 (/N	Nm	BUS	b	PHH	• •	'EDS			ARR.	TYPE
ΞB		0.0	0	3.00			Ö			0.05	-	= ^	Y/N	min T 28.8		_
WB		0.0		3.00		N	-							28.8		3
NB			- 0 ·	3.00		N	ŏ					50 50				3
SB		0.00	0	3.00		N	ō		õ			50		14.3 14.3		3 3
	هري بيبيد معك فتت															~~~ <u>~</u>
		-	ידרו	PI		_	SI	GNAL	SETT					CLE LENG		
EB	IΤ	F	-111	PI	1-c	-	171-3	PH	-4	5 J P.		P		PH-2 P	'H3	PH-4
	тн									NB	LT		X			
	RT										TH		x	X		
	PD										RT PD					
ЯВ	LT		Х							SB	LT					
	тн									96	ТН					
	RT		Х								RT			X		
	PD										PD			^		
						·	بجره عدد من نقت .							يرم جد حد حل خزن جم حد حد	میں زارت علم میں ا	
	LA	NE 6	SRP.	V,	/C			LEVË	L OF DELA		LC	s	APD.	DELAY	APP.	INC
٨B		L	-		536		.208		34.		Ē			.7		D
		R		0.3			. 208		26.		D		36	• f		U
NB		L		0.9			. 517		27.		Ď		16	.6	:	С
		Т			378		. 717		4.		A					_
SB		Т					. 200		29.		D		23	.8	1	С
		R		0.5	531	0	. 408		17.	7	C					
INTE	ERSE	CTIC	)N :		Del	ay	= 5	 0.3	 (sec/	'veh)		/C =	0.800	LOS	= C	

· •

-

}

.

.

. .

•

· ... •

SUM *** INT ARE ANA DAT TIM	S HCM: SI MARY REPO ERSECTION A TYPE LYST E MENT	RT ********** 	******** B. ON/OF 9 EAK HOUR	*** F-R	***** AMPS/4	OTH S	TREE	т	*****	*****	*****	****
TH RT	EB 552	0 1890 0 391	111 : 1048 : 0 :	L R R	EB 12. 12. 12. 12. 12. 12. 12.	0 0 0 0 0		WB 12.0 12.0 12.0	T T R	NB 12.0 12.0 12.0 12.0 12.0 12.0 12.0	T T T	12.0 12.0
		 HV	ADJ PKG	BL	JUSTME JSES	NT FA	CTOR	 5	PED.	<u></u>	ARR.	
EB WB NB SB	0.00		N O		0 0 ·	0.95		50 50	N N	26.5 26.5		3 3 3 3
EB	LT ТН	-1 PH-2 X			AL SET AH-4		LT TH	PH		LE LENG H-2 P X		
WB	RT PD LT TH RT PD	x				SB	RT PD LT TH RT PD		X X	x x		
	د هي وري بران شار کې کې بين بران بر	یری بید هم سی می چین زیرا: فک ک	ے یہیں بیس وہے میں میں میں میں میں ا	LEV	'EL OF	SERV:			• ••• •••	*** *** ***		
EB	LANE GRI L R		G/C 0.392 0.558	2	DEL: 21		LOS	5	APP. DI 34.(	ELAY D		LOS
NB SB	T R L	1.008 0.669	0.408	3 3	37 20	.1 .3	D C		34.4			D 
	Г Т		0.123			.9 .0	D B		13.9	5	]	3
INTE	ERSECTION	: De	lay = 2	29.7	(sec	/veh)	 V/	'C =	<del>1.111</del> 0,721	LOS	= D	

•

• .}

•

.

·····

•

.....

· · · · ·

SUM *** INT ARE ANA DAT TIM	35 HCM: S IMARY REP ERSECTIO A TYPE LYST E	DRT **** NI O G	****** -4 E.I THER 5R /17/89 .M. PE	+*** 3. OI 9 EAK I	**** N/OFI HOUR	***† F-Rf	**** AMPS/	40TH S	TREE	T	***	***	*****	*****	****
<b>R</b> 1	EB 674 0 1737 60	WB O O	0 2308 478	9 13 85	35 : 58 : 0 :	L R R	12. 12. 12. 12.	.0 .0 .0 .0		WB 12.0 12.0 12.0	- - -	г Г २	NB 12.0 12.0 12.0 12.0 12.0 12.0	T ፕ ፕ	SB 12.0 12.0 12.0 12.0 12.0 12.0
EB WB NB SB	(%) 0.00 0.00	) (* 3. 3. 3. 3. 3.	HV K) . 00 . 00 . 00 . 00	ADJ Y/N N N N N	PKB Nm 0 0			ENT FA PHF 0.95 0.95 0.95 0.95	_		ז גץ ז ז ז	PED. /N N N N	BUT. min T 26.5 26.5 11.5 11.5	ARR.	TYPE 3 3 3 3 3
EB WB	PH LT TH RT PD LT TH RT PD	1 X	PH-2	: F	S] ₩−3	I GNA	'⊢_SE' 'H−4	TTINGS NB SB	LT TH RT PD	P		CYCi	LE LENG I-2 P X X X	TH =	
EB NB SB	LANE GF L R T R L L T	 ?F°-	V/C 0.783 1.046 1.022 0.679 0.596 0.295		G/C 292 667 492 492 142 633	2 7 8	DEL 32 36 36 16 39	 - SERV - AY 2.7 3.8 5.1 5.5 9.6 5.4			APF	). DE 37.0 33.0 10.6	)	]	LOS D D
INT	ERSECTION	l :	De					c/veh)		/C =	1 0.8		LOS	= D	

•

•

•

•

.

.

}

: }

. .

507 +** E( -)	5 HCM: SIG MARY REPOR ERSECTION.	T ******** .I-4 W.B. .OTHER	******	****		******	*****	*****	*****
)67 	ALYST TE IE IMENT	4/17/89 A.M. PE		355TOWN CON	INECTOR				
-T TT R R	EB WI 0 5 0 850	5 1553 0 268	SB : 0 : 472 : 20 : 0 : ;	EB 12.0 12.0 12.0 12.0 12.0 12.0	T 12. 12. 12.	.0 L .0 L .0 T .0	NB 12.0	TR R	SB 12.0 12.0 12.0 12.0 12.0 12.0
EB VI VI SB	(%) 0.00 0.00 0.00	1-13		ADJUSTMENT BUSES P Nb 0 0. 0 0. 0 0. 0 0.	HF PED	S PED.			3 3 3
	PH-1 LT RT PD LT X TH X RT PD			BNAL SETTIN PH-4 N	IGS IBLT TH RT PD BLT TH RT PD	CYC PH-1 P X X			
JF JF JF	LANE GRP. LT L T TR R	V/C 0.941 1.108 0.335 0.883 0.084	L G/C 0.283 0.475 0.475 0.167 0.167	EVEL OF SE DELAY 37.2 81.6 12.8 40.4 27.3	RVICE LOS D F B E D	APP. D 37. 71. 39.	2 9		LOS D F D
INT	ERSECTION:	Del	.ay = 57	.5 (sec/ve	h) V/C	= 1.016	LOS	= E	

· ·

.

.

•

··· · · ·

are Anf		ini 1	T	n a		IP/COLUM	blie n	****	-				
	EA TYPE.	C	THER	D. U	14—1 <b>4</b> 11		603 D	RIVE	-		,		
<b>T</b> \ <b>\\</b> 7	ALYST			~						•			
	1E				HOUR								
COM	MENT	2	2010 W:	ITHO	UT CR	IOSSTOWN	CONN	ECTC	)R				
										EDMETR			
	EB	WB			5B :	EB			WB	COMETRI	NB		SB
LT	0		1271		0:	12,		LT		L	12.0	т	
ТΗ		696	219	5	76 :	12.	.0	т	12.0	L			
	0	0	0	:	16 :		. 0		12.0	Т	12.0		
RR	0	0	0		0:	12.	. 0		12.0		12.0		12.
					:	12.			12.0		12.0		12.
					:	12.	.0		12.0		12.0		12.
						ADJUSTM	ENT FI	асто	RS				سبر حما تنظ خلك ت
						BUSES	PHI	<b>-</b>	PEDS	PED.	BUT.	ARR.	TYP
···· ···			(*)			NЬ				Y/N			
EB	0.00					0							3
WB	0.00					0					25.8		3
NB SB	0.00		3.00 3.00		0	0			50 50		11.3		3 3
				IN 			0.95	J 		N	11.3		చ 
	-			_		GNAL SET	TING	3			LE LENG		
<b>m</b>	LT ·	PH−1	PH-5	: +	-H-3	PH-4	5.1Th			H-1 P	H-2 F	PH-3	PH-
	TH						INB	LT TH		X X		•	
	RT							RT		^			
	PD							PD					
WB	LT	x					SB	LT					
	тн	х						TH			х		
	RT							RT			X		
	PD							PD					
					 	_EVEL OF	SER	VICE				•====	
	LANE						AY	L	os	APP. D	ELAY	APP.	LOS
NB	LT		0.847				.8			31.			D
B			0.957							31.	9		D
B	TR		0.289				.5				_		_
910) - Cl (	R		0.829	0	· <1/	చచ	.5		U	35.1	6		D

}

[·]

SUM *** ARE ANA DAT TIM	5 HCM: S MARY REP ******** ERSECTIO A TYPE. LYST. E E	IGNA ORT **** NI G 4	-4 E. )THER SR /17/8	**** B. 0 9 EAK	**** FF-R HOUR	*** AMP	***** /COLUI	mbus d	RIVE	<u>:</u>	*****	*****	<del>* * * * * * </del>	* * * * * 1
	·	 UO										· <del> · · · · · · · · ·</del> ·		
	EB	WB	UMES NB	· .	58 :		EB			WB	EOMETR	NB		SB
I T .	16						12.					12.0	4	55 12.0
	696				52 :							12.0		12.0
RT.	1271	ŏ	5				12.					12.0		
RR	30	ŏ	0		0:		12.			12.0		12.0		12.0
	00	v	v		• •	К	12.			12.0		12.0		12.0
					:		12			12.0		12.0		12.0
	، دی جبر عند عند علا که دی ه	هي خيل خيل هي		• • • • • • • • • • • • • • • • • • • •				ENT FA	· - · ·					
	GRADE		HV				JSES	PHF	P	EDS		. BUT.		TYPE
	(*)	-		Y/N			NЬ				Y/N			
EB	0.00		.00	N				0.95				25.8		3
WB	0.00		.00	N	0		0	0.95		50		25.8		3
NB SB	0.00		.00	N				0.95				17.3		3
30 	0.00	ت 	.00	N 	0		0	0.95		50 	N 	17.3		3
								TINGS				CLE LEN		
			PH-a	5 6	PH-3	F	PH−4			P	H-1	PH-2	PH-3	PH-4
EB		X						NB						
	TH RT	X X		· ·					TH		X			
	PD	^				•			RT		x			
٨B								SB	PD			x		
	TH							30	TH			x		
	RT				•				RT			~		
	PD								PD					
						LEV		SERV	ICE					
	LANE GF	P.	V/C		G/C		DEL		LD	5	APP.		APP.	LOS
EB	LT		0.76		). 298			- 1	D		15.	.3		С
	R		0.745		. 692				B					
NB PD	TR		0.983		. 400			. 0	D		33.			D
5B	L T		0.32		). 233 ). 233			.1 .9	D D		26.	.7		D
	RSECTION	 ! :	De	elay	= 2	24.3	(sec	/veh)	v.	/C =	1.101 0.785	 LO	s = C	

•

•

.

•

•

.

· . . ]

· · · · · ·

上. ※9 下	5 HCM: SI MARY REPO ERSECTION	)RT ******* !I-4 E OTHER	****** .B. OFF	****	*****	**** 3US D	****** RIVE	****	<del>`***</del> **	<del>• * * * *</del> •	****	<del>****</del>
	ALYST	4/17/	РЕАК НО		STDWN (	CONNE	CTDR					
·	]	VOLUMES	· · · · · · · · · ·	•				GEOME				, and the same same same
	l	WB N		:	EB		WB		NE	i		SB
T	20	0 6			12.0				· 12		1	12.0
	850	0 1474	4 430				12.	0 Т	. 15	. 0	T	12.0
.7	1553 30	0	50	: R	12.0		12.	O T	- 12 R 12 12	. 0	Ť	12.0
R	30	0 0	0 0	: R	12.0	)	12.	0	12	. 0	•	12.0
	}			:	12.0	)		0		. 0		12.0
· ·				:	12.0	)	12.	0	12	.0		12.0
	/		د سد مد منا ختو در ۲۰۰ - ۲۰۰									
<b>.</b>	-			ADJ	USTMEN	IT FA	CTORS		7			
		HV					PEDS				ARR.	TYPE
	0.00	(%) 7.00		NM	Nb			Y/	N mi	nT		
	0.00	3.00	N N	0	0	0.95	50	) N	2	5.8		3
E.	0.00	3.00	N N	0	0	0.95	50		2	5.8		3
E	0.00 0.00 0.00	3.00	- N N	ŏ	0	0.90	50 50 50		1	7.3		3
			·			0.93		, N	1	7.3		3
				SIGNA	L SETT	INGS			CYCLE	L ENGT		120.0
		-1 PH-	-2 PH-					PH-1				PH-4
E		X				NB						
		X					тн	X				
	)	х					RT	Х				
	PD						PD					
B	LT					SB	LT		Х			
· ·	TH						TH		X			
	RT						RT					
	PD						PD					
				1 2 0	EL OF	ecour						
	LANE GR	. v/c	; G/		DELA			000			000	
B	LT	0.85			29,		LOS D		. DELA 23.8	1	APP.	
	R	0.96			20.		č		69.0		i	C
B	TR	0.94			31.		D		31.3			D
B	L	0.34			27.		D		25.1			D
	т	0.50			24.		Ē					-
-		بدید عقد حک سے جس بدی بندی هد										
NTE	ERSECTION	: D	elay =	26.6	(sec/	veh)	V/C	= <del>1, 3</del>	<del>98</del> -	LOS	= D	
}								0.7	87			

٠

and the state of the second second second second second second second second second second second second second

·····

} ·...]

DAT	Έ	T 	• • • •	DTHER GSR 4/17/89 A.M. PI 2010 W	EAK	HOUR UT CI	RDS	STOWN	CONNE	CTOF	2					
			vo,	LUMES		 :							ETRY	, ,	و در هم منه منه منه منه	
•	1	EB	WB		;	58 :		EB			WB			NB		SB
		96	0	0									т	12.0	L	12.
TH		20	0	1853	23	37 :	L	12	0				Ť		Ť	12.
RT		0	0	208		0:		12,					Т	12.0	, T	12.
RR		0	0	208 0		0:		12,					R	12 0	Ť	12.
						:		12.			12.0		**	12 0	T T	
						2		12.			12.0			12.0		12.
	-	ي وي خذب حيد عبد		و دور هم ها ها ها بدو ها						** <u></u>						12.
			•	•			ADJ	IUSTME	ENT FA	CTOR	S					
		GRADE	-	HV	ADJ	PKG	BL	JSES	PHF	P	EDS		PED.	BUT.		
		(%)		(%)	Y/N	Nm		NЬ		-				min 7		
		0.00	) :	3.00	N	0			0.95		50			31.6		3
WΒ		0.00	) (	3.00	N	0			0.95					31.6		3
NB		0.00	) ;	3.00	N	0		Ó	0.95		50		N	14.3		3
SB		0.00		3.00	N	0		Ó	0.95			i		14.3		3
									، بيبير هي حين طل جيب ه							
		-	1. J 4			SI	GNA	IL SET	TINGS				CYC	LE LEN	VGTH =	120.
EB	<b>а</b> т			PH-2		·H-3	-	'H−4			₽	H-1	Pi	H-2	PH-3	PH-
100 AD	TH		X X						NB							
	RT		x							ŤΗ				Х		
	PD		×							RT				X		
WB	LT									PD						
<b>M</b> D	TH								SB			X				
	RT									TH	·	Х		X		
										RT						
	PD									PD						
				ورو جده خلت وی هنه هنه وی												
	LF	NE G	RP.			6/6		רב 10	SERV:		-		<b>.</b>			
EB		L	•	V/C	<u>`</u>	0/0		72	.HT	20;	Dí l	HH	J DE	ELAY	APP	
		TR		0. 244	~	- <b>-</b> 76				<u></u>			31.9	9		D
NB		т		0.244	 				.0	- U				_		
		R		0.968	 			∪د ≂∙		<u>D</u>			28.7	7		D
SB		Ľ		0.349		917		12	.6					_		
		Ť		0.803		• = 1 /		ېک	.3 .5				12.3	3		В

•

•

.

•

•

:

1

· ·

ANI DAT	TERSECTI EA TYPE ALYST TE ME MENT	• • • • • • • • • • • • • • • • • • •	)THER 398 4/17/8 3. M. PE	<del>9</del> к н	OLIR		·								
	و هود همه وی جمه بلو جمه بنان به												· ···		
	EB	WB	NB				EB			WB		IETRY	NB		<b>6</b> 70
LT	850		0	1	37	ιL	12.	0				т	12.0	I	SB 12.
TH	146	0	00C A	10				-		12.0		Ť	12.0		12.
RT	0	0	255		0	: TR	12. 12. 12.	Q		12.0			12.0		
RR	0	0	. <b>O</b>		0			-		12.0		R	12.0		
						8	12.			12.0			12.0		12.
	یو سو وی هو بای هم نال جه د		، بيرو عنه، عنه عنه جه .			: 	12.	0		12.0			12.0		12.
	<b></b>	_				AD	JUSTME	NT FA	CTOR	S		، صف دیبیہ سے سے	<u>بے نے جہ ح</u> ن بنتہ <del>ہے</del> ،		
	GRADE	Ξ.	HV	ADJ	PKG	3 B	USES	PHF	P	EDS		PED.	BUT.	ARR.	TYP
EB	••••	•			- 141		IND				- Y	/N	min T		•••
WB	0.00	ט יי ד (	.00	N N		)	0	0.95				N	26.5		3
NB		) 3	. 00	N		, )	0	0.95		50		N	26.5		3
SB	0.00	3	. 00	N	č	, ,	ŏ	0.93		50 50		N N	11.5 11.5		3 3
EB	LT TH	·H-1 X X	 PH-2	2 F	 9 9 H3	IGN I	 AL SET PH-4	TINGS		—		CYCL		 GTH =	120.
	RT	X							RT				x		
WB	PD LT								PD				·		
HQ	TH							SB							
	RT PD								TH RT PD		X		X		
					. <u></u>	LE\	/EL OF	SERVI	 (CF						
	LANE G	RP.	V/C		G/C		DEL	AY	1.09	3	APP	. DE	ELAY	ADD	1 ne
EB			0.003	· · · ·	- J.	1	<u>ک</u> ک	. 3	Ð			35.7	7		D 203
₽B	TR		0.274	0	. 31	7	19.	. 9	C					•	
10	T R		1.020					. <u>o</u>	Ð			33.E	3	1	D
5B	к L		0.369 0.571					.7	B						
	T		0.658	- D	- 13 - 67		38. 9,	.3				11.0	)	1	3

.

•

• •

•

-

· } . (

- | | !

.

-

+

. }

-

.

ARE ANA DAT	EA T ALYS TE 1E	YPE.	• • • • • • • • • • • • • • •	4/17/8 A.M. P	9 9	PERI	מכ					41)				
	1MEN	T	• • • •	2010 W	I THO		ROSS	TOWN	CONN	ECT	ror 		<b>~</b>			
		EB	WB	LUMES NB									METR			
LT				182				EB			WB			NB		SB
TH		õ	146	2401		100.		12.	0	L	12.	0		12.0	Т	12,
RT		ŏ	1.37	0				14.	0		12.	0	Т	12.0		12,
		ŏ	50	ŏ				12.	0	к	12. 12.	0	T	12.0		
		•		•		•		12.	0				Т	12.0		
•						-		12.	-		12.			12.0		12.
	•			، وبد حد حد نده ببد حد		; 		12.	0		12.	0		12.0		12.
							ADJ	USTME	NT F					ے حید دید حید دیت جرب ہ		
	I	GRADI	E	HV	ADJ	PKG	BU						nen	BUT.	000	
		(%)		(%)	YZN							,	V/N	min T	HKK.	1 41
EB		0.00	с ;	3.00	N				0. 95	5	50		N			~
WB		0.00	) (	3.00	N	0		ō	0.95	5	50		N	31.8		3 3
NB		0.00	э;	3.00				ō	0.95	5	50		n M	14.3		د 3
SB		0.00	о ;	3.00	N	Ō		ō	0.95	5	50		N N N	14.3		د 3
												***				
		-	51.J. 4			SI	GNA	SET 1-4	TING	5			CYC	LE LENG	STH =	120.
FR	LT			PH-2	- +	5−H-	PI	1-4				PH-:	L P	'H-2 F	×н-з	PH-
	TH								NB			X				
	RT										Н	Х		х		
	PD									R						
ЫR	LT		x							P)						
	ТН		x						SB		•					
	RT		Ŷ				•						•	х		
	PD		^							R' Pi				Х		
			ه هه جه ه	<u>سر میں برند</u> میں بین میں دی			<b></b>									
	14		RD				LEVE	EL OF	SERV	IC	E					
٨B			r + 44 ° #	0.688		976 1 900		가드니	н <b>х</b>	1	LUS	AF	ם ייי <i>י</i> י	ELAY		
		LT		0.500		- 200		27,	. C		D D		31.	8	I	2
		R		0.392				27,	. 9		Ð					
NB		Ê		0.620		107		26.	. 8		D		_	-		
		T		0.320				37.					8.	9	I	3
SB		TR		0.945		- 11/ 577			.0		в			-		
		R		1.002		. 577		20			С 		25.	9	I	)

. . .

.

•

. .

}

.

.

•

-

.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IME	E	• • • •		.4/ .P.	17/8 M. F	PEAK			ossi	rown	CON	NEC	TOR	!							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									-						 (	 SEOI	 1ETR	 Y				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	т	Ε							-				ł			<b>`</b>	1			-	SI	
RR       0       20       0       0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0       12.0 <th></th> <th></th> <th></th> <th>12</th> <th>0</th> <th>2933</th> <th>5 - 1E</th> <th>317</th> <th>2</th> <th></th> <th>12.</th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>12 12</th>				12	0	2933	5 - 1E	317	2		12.	0								-	12 12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													R									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	••		•		•	•	•	Ý	I								1			R	12 12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_								1		12.	0									12	
(x)       (x)       Y/N       Nm       Nb       Y/N       min T         EB       0.00       3.00       N       0       0       0.95       50       N       31.8       3         NB       0.00       3.00       N       0       0       0.95       50       N       31.8       3         SB       0.00       3.00       N       0       0       0.95       50       N       31.8       3         SB       0.00       3.00       N       0       0       0.95       50       N       14.3       3         SIGNAL SETTINGS       CYCLE LENGTH = 1         PH-1       PH-2       PH-3       PH-4       PH-1       PH-2       PH-3         RT       X       X       RT       X       X         PD       RT       RT       X       X       R       X         WB       LT       X       SB       LT       X       R       X         PD       RT       X       R       X       R       X       R         WB       L       0.610       0.192       36.1       D       31.6       D <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ADJL</td> <td>STME</td> <td>ENT F</td> <td>FAC</td> <td>TOR</td> <td> 5</td> <td></td> <td>، سے جب سنہ د</td> <td></td> <td></td> <td></td> <td></td>										ADJL	STME	ENT F	FAC	TOR	 5		، سے جب سنہ د					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												Pł	IF	P	EDS					ARR	. Тү	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0	0	3.			• •				0.9	95		50						7	
NB       0.00       3.00       N       0       0       0.95       50       N       14.3       3         SIGNAL SETTINGS       CYCLE LENGTH = 1         PH-1       PH-2       PH-3       PH-4       PH-1       PH-2       PH-3         FIGNAL SETTINGS       CYCLE LENGTH = 1         PH-1       PH-2       PH-3         TH       X       CYCLE LENGTH = 1         PH-1       PH-2       PH-3         TH       X         TH       X         TH       X         TH       X         LEVEL OF SERVICE         NB       10.0446       0.192       27.3       D         NB       10.0414 <th cols<="" th=""><th></th><th></th><th>0.0</th><th>0</th><th>3.</th><th></th><th></th><th></th><th>0</th><th></th><th>0</th><th>0.9</th><th>95</th><th></th><th>50</th><th></th><th></th><th></th><th></th><th></th><th>З</th></th>	<th></th> <th></th> <th>0.0</th> <th>0</th> <th>3.</th> <th></th> <th></th> <th></th> <th>0</th> <th></th> <th>0</th> <th>0.9</th> <th>95</th> <th></th> <th>50</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>З</th>			0.0	0	3.				0		0	0.9	95		50						З
Image: Side of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector of the sector																					3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ے بعد دند در										و جبو سبة منك ا	جريدة متفاك الل	<del></del> -				L 	.4.3 		ک 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· PH	1	PH-	2	PH-				TING	<del>3</del> 5		, F	11.14	CYC		LENG	TH =	120	
TH       TH       X       X         PD       PD       PD         WB       LT       X       SB       LT         TH       X       SB       LT       X         PD       SB       LT       X       X         RT       X       RT       X         PD       PD       PD       PD         WB       LT       X       RT       X         PD       PD       PD       PD       PD         LANE GRP.       V/C       G/C       DELAY       LOS       APP. DELAY       APP.         WB       L       0.610       0.192       36.1       D       31.6       D         WB       L       0.6446       0.192       28.3       D       R       0.335       0.192       27.3       D         NB       L       0.414       0.225       30.6       D       10.0       B         SB       TR       0.812       0.508       17.2       C       18.4       C         R       0.861       0.508       22.6       C       INTERSECTION:       Delay = 14.9 (sec/veh)       V/C = 0.817       LOS = B   <					-		-	• • •	U	FII	-	NE	3	LT	<b>.</b>		ł	-11-2	-	'H−3	PH	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																		x				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ł	PD																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												SE	3	LT								
PD       PD         LANE GRP.       V/C       G/C       DELAY       LOS       APP. DELAY       APP.         WB       L       0.610       0.192       36.1       D       31.6       D         R       0.335       0.192       28.3       D       D       NB       NB       0.335       0.192       27.3       D         NB       L       0.414       0.225       30.6       D       10.0       B         SB       TR       0.821       0.508       17.2       C       18.4       C         R       0.861       0.508       22.6       C       18.4       C         INTERSECTION:       Delay = 14.9 (sec/veh)       V/C = 0.817       LOS = B																						
LANE GRP.       V/C       G/C       DELAY       LOS       APP. DELAY       APP.         WB       L       0.610       0.192       36.1       D       31.6       D         LT       0.446       0.192       28.3       D       31.6       D         R       0.335       0.192       27.3       D       D       NB       L       0.414       0.225       30.6       D       10.0       B         SB       TR       0.871       0.733       9.1       B       SB       18.4       C         R       0.861       0.508       17.2       C       18.4       C         INTERSECTION:       Delay = 14.9 (sec/veh)       V/C = 0.817       LDS = B		PD					•								•			X				
WB       L       0.610       0.192       36.1       D       31.6       D         LT       0.446       0.192       28.3       D       D       31.6       D         R       0.335       0.192       27.3       D       D       10.0       B         NB       L       0.414       0.225       30.6       D       10.0       B         SB       TR       0.871       0.733       9.1       B       B       SB       18.4       C         R       0.861       0.508       17.2       C       18.4       C         INTERSECTION:       Delay = 14.9 (sec/veh)       V/C = 0.817       LDS = B									L	EVE				CE					وهر همه خفن فلك :	·		
LT 0.446 0.192 28.3 D R 0.335 0.192 27.3 D NB L 0.414 0.225 30.6 D 10.0 B SB TR 0.812 0.508 17.2 C 18.4 C R 0.861 0.508 22.6 C INTERSECTION: Delay = 14.9 (sec/veh) V/C = 0.817 LOS = B	3	ЦН		GKP,											3	AP			Ϋ́	APP		
NB       L       0.414       0.225       30.6       D       10.0       B         T       0.871       0.733       9.1       B       B       B       B       B       B       B       B       B       B       B       B       B       C       18.4       C         SB       TR       0.812       0.508       17.2       C       18.4       C         R       0.861       0.508       22.6       C       C       18.4       C         INTERSECTION:       Delay = 14.9 (sec/veh)       V/C = 0.817       LOS = B       B			LT		· · (	), 44	5	0. 1	92								31.	ь			D	
T     0.871     0.733     9.1     B       SB     TR     0.812     0.508     17.2     C     18.4     C       R     0.861     0.508     22.6     C       INTERSECTION:     Delay = 14.9 (sec/veh)     V/C = 0.817     LOS = B	1		R																			
$\frac{SB}{R} = \frac{TR}{R} = 0.812 = 0.508 = 17.2 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = C = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18.4 = 18$			Т														10.	0			в	
INTERSECTION: Delay = 14.9 (sec/veh) V/C = 0.817 LOS = B	8	ي م الم الم		ېې 							17	.2 🔌					18.	4			C	
						وجعه عنت سببه ا				• <b></b>												
		RSE	CII	JNI		Di	≥lay	=	14	.9	(sec	/veh	)	V/	'C =	٥.	817		LOS	= B		
	ŝ	18 C	<b>19</b> 7	-			<b>7</b>	e e		-		-7#			~	•			· •			
				نعد .	-		940 - 1. 44 1947 - 1. 44		سوتلاد ب		بارانيند. تصنيفو در مان		ر. • • •	· · ·	ser a Toruna a	· Artes		•••	, ,	u + 1.	•	
•			·		·						•					•						
				·																		