Task A5a Air Quality Report

TAMPA INTERSTATE STUDY

State Project No. 99007-1402, WPI No. 7140004, FAP No. IR-9999(43)

Interstate 275 (I-275) from Dale Mabry Highway Interchange north to Dr. Martin Luther King Jr. Boulevard (formerly Buffalo Avenue), Interstate 4 (I-4) from I-275 (including interchange) to east of 50th Street (U.S. 41), and the Crosstown Connector from I-4 southward to the existing Tampa South Crosstown Expressway, Hillsborough County.

Prepared For The FLORIDA DEPARTMENT OF TRANSPORTATION

Prepared By GREINER, INC.

In Association With

KNIGHT APPRAISAL SERVICES, INC. PIPER ARCHAEOLOGICAL SERVICES

DECEMBER 1994

EXECUTIVE SUMMARY

In accordance with 23 CFR 771 and Florida Department of Transportation (FDOT) guidelines, an air quality impact analysis was conducted to determine the effect of the proposed Tampa Interstate System improvements. The study limits for the microscale analysis are I-275 from the Dale Mabry Highway interchange north to Dr. Martin Luther King, Jr. Boulevard, I-4 from I-275 (including the interchange) to east of 50th Street (U.S. 41), the Crosstown Connector from I-4 southward to the existing Tampa South Crosstown Expressway and the existing South Crosstown Expressway from Kennedy Boulevard to Maydell Drive. The study area also includes the transition area extending from Dr. Martin Luther King, Jr. Boulevard to Hillsborough Avenue. The air quality impacts from proposed improvements within the study limits are addressed in an Environmental Impact Statement.

Compared to the No-Action Alternative, carbon monoxide (CO) concentrations predicted for the Preferred Alternative are expected to be lower in the vicinity of the project as a result of increased motor vehicle mobility, faster operating speeds, and less stop-and-go driving. The microscale analysis indicates that the Preferred Alternative will not cause, or contribute to, CO concentrations above the one- and eight-hour National Ambient Air Quality Standards.

The project is in an area which has been designated as non-attainment for the ozone standards under the criteria provided in the Clean Air Act Amendments of 1990. This project is in conformance with the SIP because it will not cause violations of any of the National Ambient Air Quality Standards. This project is included in the urban area's current approved conforming TIP which was signed by the Secretary of the Florida Department of Transportation on August 8, 1994. This project is included in the area's conforming long-range plan. This project is included in the area's Conformity Determination report which was approved by FHWA/FTA on June 30, 1994.

Construction activities causing short-term air quality impacts in the form of dust will be minimized by adherence to FDOT <u>Standard Specifications for Road and Bridge Construction</u>.

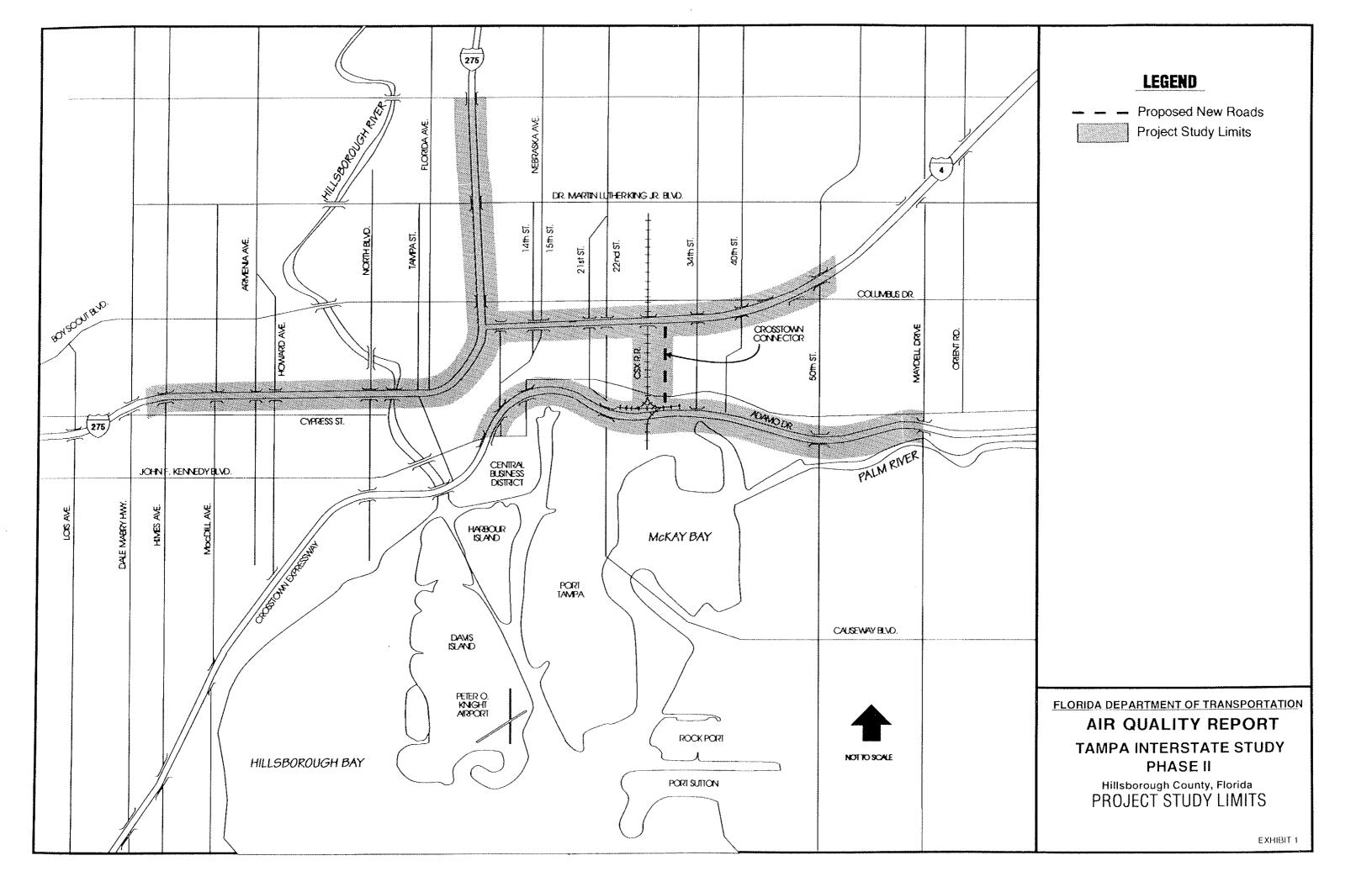
TABLE OF CONTENTS

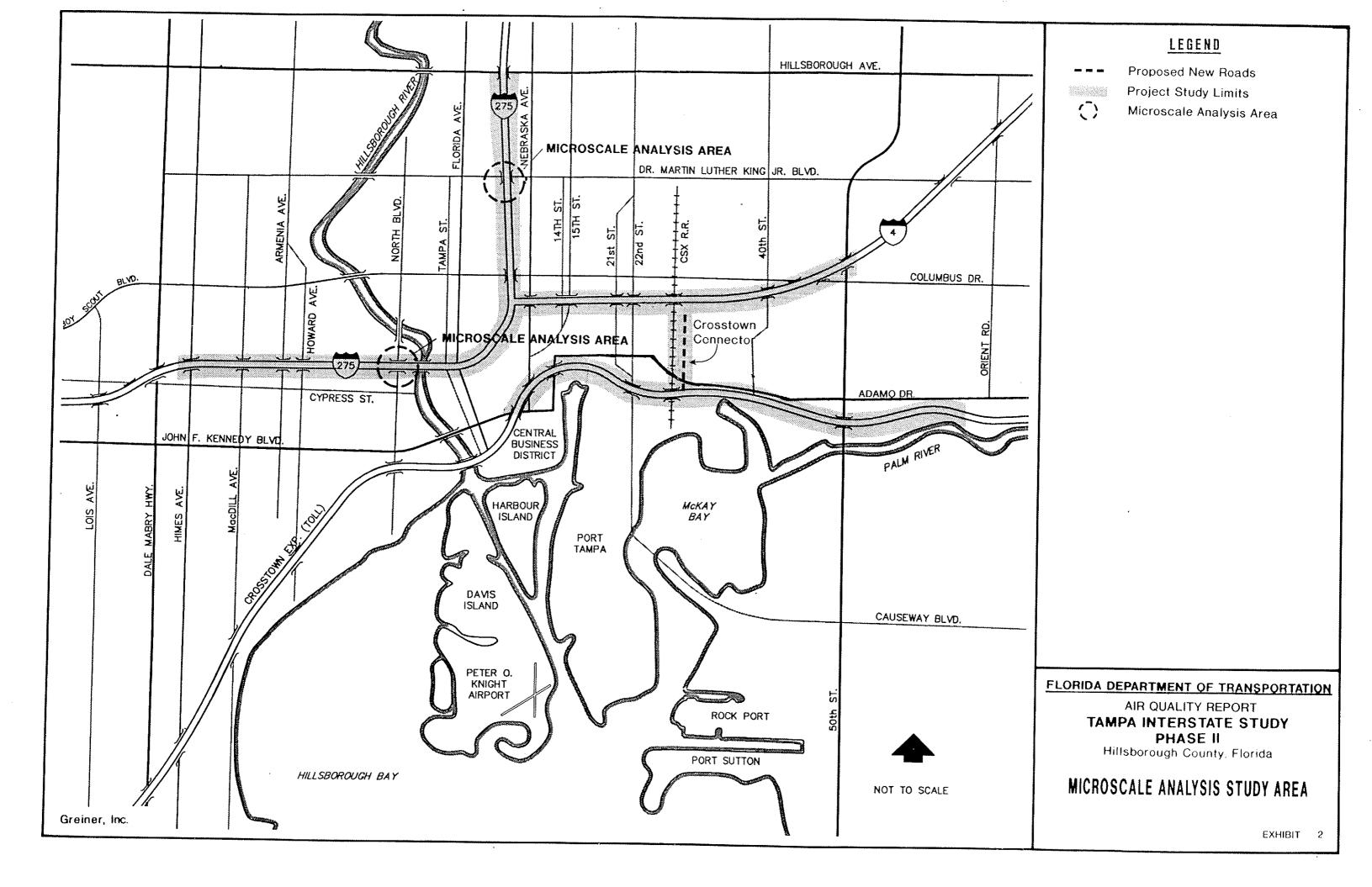
	Pag	<u>e</u>
List o	ve Summary	ii
I.	INTRODUCTION	1
II.	AIR QUALITY IMPACT ASSESSMENT	2
	A. Existing Conditions B. Microscale Analysis 1. Methodology 2. Results	5
III.	CONSTRUCTION IMPACTS	2
IV.	CONCLUSION)
v.	AGENCY COORDINATION	,
LIST	F REFERENCES	
APPE	DICES	

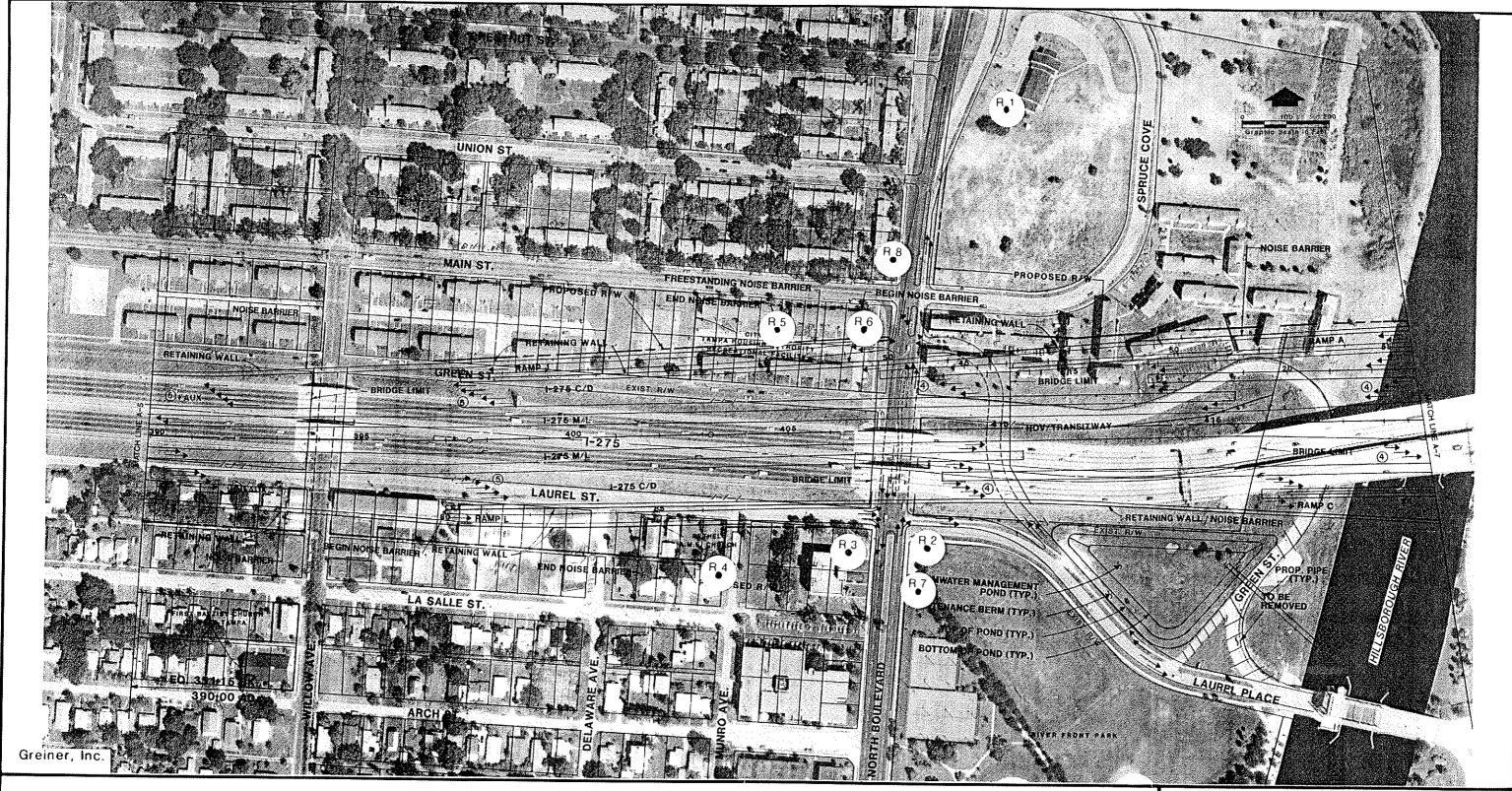
LIST OF TABLES

Table No.	<u>Title</u>	Page
1	Air Quality Monitoring Data in the Vicinity of the Tampa Interstate Study Area	3
2	Current Attainment/Non-Attainment Designations for Hillsborough County	4
3	Summary of Microscale Analysis Modeling Parameters	8
4	Predicted One- and Eight-Hour, Worst-Case Carbon Monoxide Concentrations in the Vicinity of the I-275/North Boulevard Interchange for the Year 2010	10
5	Predicted One- and Eight-Hour, Worst-Case Carbon Monoxide Concentrations in the Vicinity of the I-275/Dr. Martin Luther King, Jr. Boulevard Interchange for the Year 2010	11

LIST OF EXHIBITS


Exhibit No.	<u>Title</u>	Follows
1	Project Study Limits	. Page 1
2	Microscale Analysis Study Areas	. Page 6
3	Receptor Locations at the I-275/North Boulevard Interchange	. Page 7
4	Receptor Locations at the I-275/Dr. Martin Luther King, Jr. Boulevard Interchange	Exhibit 3


I. INTRODUCTION


The Florida Department of Transportation (FDOT) is investigating the feasibility of improving the Tampa Interstate System in Hillsborough County, Florida. The purpose of the investigation is to produce a Master Plan, conceptual design and environmental data base for improvements to Interstate 4 (I-4), Interstate 75 (I-75) and Interstate 275 (I-275). For the purpose of developing the Master Plan, Phase I of the study, the Tampa Interstate System was divided into six study segments with established logical termini which were further sub-divided into seventeen individual design segments. Following acceptance of the Master Plan, provisions were set forth by FDOT to implement Phase II of the Tampa Interstate Study.

Phase II is intended to satisfy requirements for environmental documentation. The study limits for the air quality analysis are shown in Exhibit 1 and include I-275 from the Dale Mabry Highway interchange north to Dr. Martin Luther King, Jr. Boulevard, I-4 from I-275 (including the interchange) to east of 50th Street (U.S. 41), the Crosstown Connector from I-4 southward to the existing Tampa South Crosstown Expressway and the existing South Crosstown Expressway from Kennedy Boulevard to Maydell Drive. The total magnitude of the improvements recommended in the Tampa Interstate Study Master Plan will require a series of staged construction projects. Therefore, the air quality impacts in the transition area extending from Dr. Martin Luther King, Jr. Boulevard to Hillsborough Avenue were also addressed. Further planning and design details regarding the proposed Tampa Interstate System Study are provided in the Environmental Impact Statement and Preliminary Engineering Report.¹

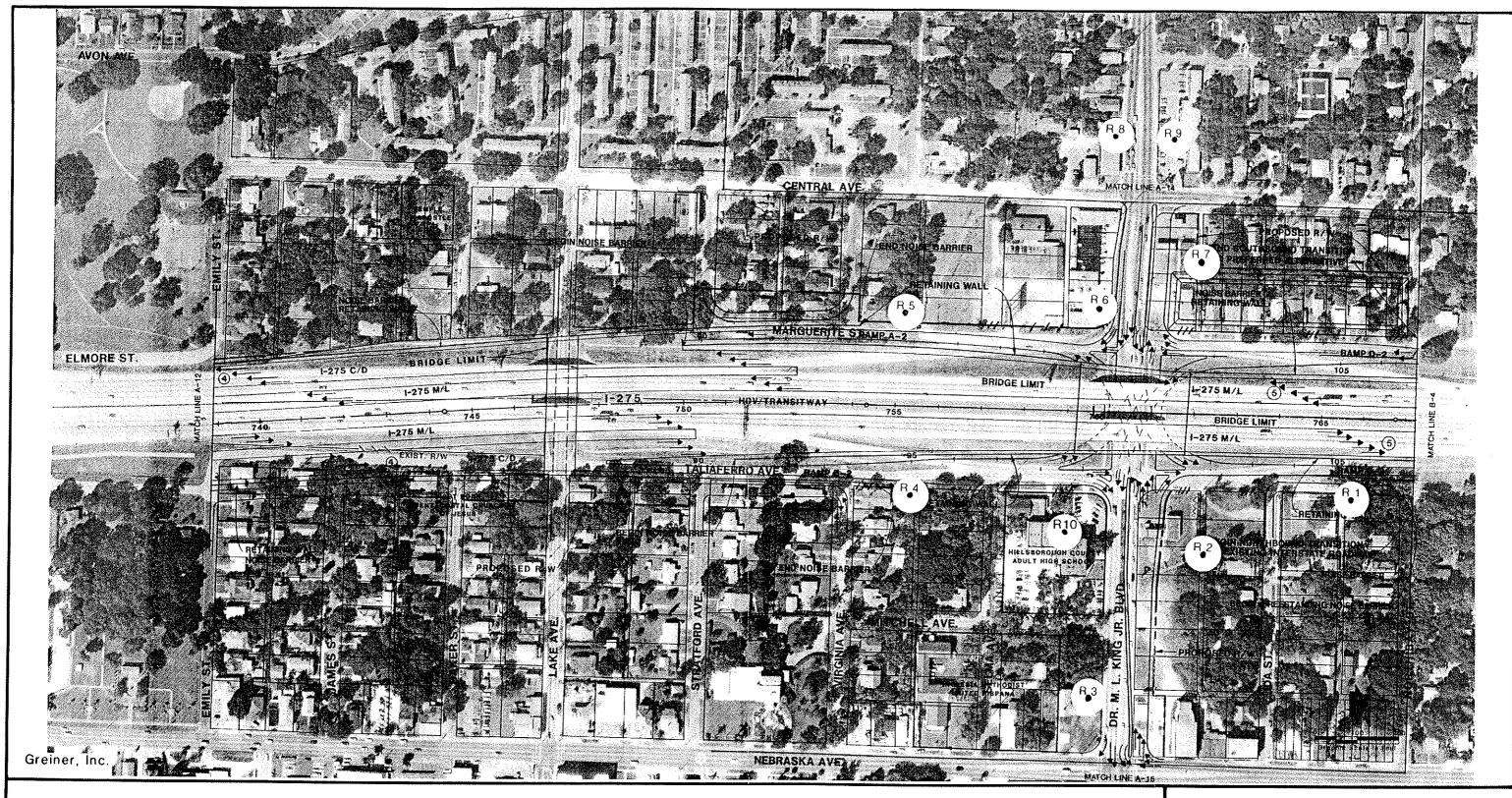
The objective of this report is to describe existing air quality conditions in the vicinity of the project; describe the methodology used to predict future air quality conditions in the project area; and to discuss the results of, and provide supporting materials for, the analyses. In accordance with 23 CFR 771 and FDOT's Project Development and Environment Manual (PD&E Manual), the assessment included a microscale analysis for carbon monoxide.²

LEGEND

R_1

Receptor

FLORIDA DEPARTMENT OF TRANSPORTATION


AIR QUALITY REPORT

TAMPA INTERSTATE STUDY PHASE II

Hillsborough County, Florida

RECEPTOR LOCATIONS AT THE 1-275/ NORTH BOULEVARD INTERCHANGE

EXHIBIT 3

LEGEND

Receptor

FLORIDA DEPARTMENT OF TRANSPORTATION

AIR QUALITY REPORT

TAMPA INTERSTATE STUDY PHASE II Hillsborough County, Florida

RECEPTOR LOCATIONS AT THE 1-275/DR.MARTIN LUTHER KING, JR. BOULEVARD INTERCHANGE EXHIBIT 4

II. AIR QUALITY IMPACT ASSESSMENT

A. Existing Conditions

Monitoring is the most reliable means of determining ambient air quality conditions. The Hillsborough County Environmental Protection Commission (EPC), in cooperation with the Florida Department of Environmental Protection (FDEP), operates several air monitoring stations located near the study area. From the monitoring data, a general profile of existing air quality conditions in the vicinity of the project can be derived.

A synopsis of the most recent air monitoring data obtainable (1990) is presented in Table 1. This information is summarized in terms of monitoring station location, distance and direction from the study area, pollutant(s) measured and maximum recorded concentrations. Comparison of these data with the National Ambient Air Quality Standards (NAAQS) is also made.

Based on air monitoring data obtained from the monitoring stations, ozone (O_3) is the air pollutant of primary concern in the vicinity of the Tampa Interstate Study area. The formation of O_3 is a long-term photochemical reaction involving solar radiation, nitrogen oxides (NO_x) , and hydrocarbons (HC). In general terms, NO_x and HC are emitted into the atmosphere in the urban core areas and air currents transport the oxidants to the suburbs. As such, violations of the NAAQS for O_3 are generally considered regional in nature.

According to the Clean Air Act (CAA) Amendments of 1977, all areas within the state are designated with respect to the NAAQS as either attainment, non-attainment, or unclassifiable. Areas that meet the NAAQS are designated as attainment. Conversely, areas that violate the NAAQS are designated as non-attainment. Finally, areas where data are insufficient for classification as either attainment or non-attainment are designated as unclassifiable. In areas designated as non-attainment, a State Implementation Plan (SIP) is developed to bring the area into compliance with the NAAQS. The current attainment, non-attainment and unclassifiable designations for Hillsborough County are shown on Table 2.

TABLE 1

AIR QUALITY MONITORING DATA Tampa Interstate Study Phase II

		Distance and		Management			
Station Number	Monitoring Station Location*	Direction from the Study Area	Pollutant(s) Measured	Maximum Recorded Concentration	Air Quality Standard	Duration	Exceeds Standard
,	Downtown Tampa	0.6 km (0.4 miles), S.	Carbon monoxide	9 ppm 5 ppm	35 ppm 9 ppm	1-hour average 8-hour average	No No
2	Davis Island	2.6 km (1.6 miles), S.	Inhalable particulates	48 ug/m³	150 ug/m³	24-hour max	No
			Sulphur dioxide	29 ug/m ³	50 ug/m ³	Arithmetic mean	% Z
				143 ug/m³	365 ug/m³	24-hour average	2 Z
			(369 ug/m³	1,300 ug/m³	3-hour average	S &
			Ozone	.124 ug/m³	.12 ppm	1-hour average	°Z
ဗ	нсс	2.1 km (1.3 miles), N.W.	Carbon monoxide	8 ppm	35 ppm 9 ppm	1-hour average 8-hour average	% % %
4	Beach Park	4.2 km (2.6 miles), S.W.	Ozone	.063 ppm	.12 ppm	1-hour average	No
5	Seminole School	1.6 km (1.0 miles), N.	Inhalable particulates	70 ug/m³	150 ug/m³	24-hour max	No
				31 ug/m³	50 ug/m³	Arithmetic mean	No
			Carbon monoxide	12 ppm	35 ppm	1-hour average	°Z
				7 ppm	6 ppm	8-hour average	N _o

Monitoring Station Address:

200 Madison Ave. 155 Columbia Dr. N. Dale Mabry Hwy./Tampa Bay St. Bay Way St. 6201 Central Ave.

22842

Florida Department of Environmental Protection, ALLSUM Report, 1990. National Air Quality Standards established by the EPA.

ppm = parts per million ug/m^3 = micrograms per cubic meter

TABLE 2

CURRENT ATTAINMENT/NON-ATTAINMENT DESIGNATIONS FOR HILLSBOROUGH COUNTY^a

Tampa Interstate Study - Phase II

Pollutant	Designations
Carbon monoxide	Attainment
Nitrogen dioxide	Attainment
Sulfur dioxide	Unclassifiable
Particulate matter	Unclassifiable
Ozone	Non-Attainment
Lead	Non-Attainment ^b

^a Source: Section 17-275, (400), (410) and (420) of the Florida Administrative Code.

A portion of Hillsborough County encompassed within a radius of 5 kilometers centered at Universal Transverse Coordinates: 364.0 kilometers east, 3093.5 kilometers north, Zone 17. The pollution source is a battery plant.

Designations: Attainment: areas within which the NAAQS have not been violated.

Non-attainment: areas within which the NAAQS have been violated.

Unclassifiable: areas which cannot be classified as attainment or non-attainment.

As shown on Table 2, the U.S. Environmental Protection Agency (EPA) has designated all of Hillsborough County as a non-attainment area for O₃. The CAA Amendments of 1990 further designate the degree of the O₃ non-attainment status as either "severe", "moderate" or "marginal" and identify any necessary changes to the SIP. Hillsborough County has been classified as a marginal O₃ non-attainment area.

A portion of Hillsborough County has also been designated as non-attainment for lead (Pb). The non-attainment area is associated with a battery plant, and the project will have no effect on the non-attainment area.

B. Microscale Analysis

The purpose of the microscale analysis is to predict the impact of the proposed improvements on future air quality conditions in the project vicinity. Specifically, the analysis examines the generation and localized transport of carbon monoxide (CO), the most prevalent air pollutant emitted from motor vehicles. The results of the analysis are used to compare the No-Action Alternative and the Preferred Alternative and to indicate whether or not motor vehicle emissions associated with the project would contribute to CO concentrations in exceedance of the NAAQS.

1. Methodology

In accordance with the PD&E Manual, Part 2, Chapter 16, a "worst-case" approach was taken in the microscale analysis. For example, traffic data and aerial photography showing the concept design (October 1992) were reviewed to identify areas having a combination of heavy traffic volumes, low vehicular speeds, and nearby reasonable receptor sites. Receptor sites are areas where the public has routine access and may spend one to several hours. The premise of this approach is that CO concentrations elsewhere along the project corridor will be lower than these worst-case locations. The transition segment extending from the northern project limit and all areas within the designated project limits were considered when determining "worst-case" locations. Based on the review, two

interchanges, I-275/Dr. Martin Luther King, Jr. Boulevard and I-275/North Boulevard, were selected for the microscale analysis.

The I-275/Dr. Martin Luther King, Jr. Boulevard interchange is projected to have heavy traffic volumes on the interstate mainline sections, arterial streets and ramp system. A relatively high volume-to-capacity ratio and long average delay per vehicle are anticipated at the signalized intersections associated with this interchange. By comparison, the proposed I-275/North Boulevard interchange will require signalized intersections on North Boulevard where none presently exist, thus increasing vehicle queuing and associated excess emissions in the area. In addition, the heaviest traffic volumes and highest volume-to-capacity ratios on the Tampa Interstate System are anticipated to occur in the vicinity of this proposed interchange and the two sections of the I-275 local access freeway are projected to operate at level of service E. Properties surrounding these two interchanges are nearly all developed for residential, commercial or recreational use. The locations of the microscale analysis study areas are shown in Exhibit 2.

CO concentrations were predicted for the year 2010 to coincide with the project's design year. For comparative purposes, the microscale analysis was performed for the No-Action Alternative and the Preferred Alternative.

Implementing all of the improvements recommended in the Tampa Interstate Study Master Plan will require a series of staged construction projects. The opening year for the various projects will be staggered over several years and the opening of a particular project segment will affect traffic volumes and operational characteristic on other project segments with different opening dates. Therefore, since a single opening year for the ultimate improvement of the Tampa Interstate System cannot be established, an opening year analysis was not conducted.

Representative, "worst-case" receptors were simulated at the I-275/Dr. Martin Luther King, Jr. Boulevard and the I-275/North Boulevard interchanges. Sensitive sites within the vicinity of the interchanges include residences, businesses, a park, and a church. The closest reasonable receptor sites at each interchange were modeled in the analysis. At the I-275/North Boulevard interchange,

model receptors include a church in the northeast quadrant (Receptor 1), residences in the southwest and northwest quadrants (Receptors 4, 5, 6 and 8); a recreational park in the southeast quadrant (Receptors 2 and 7); and the front walk of a business in the southwest quadrant (Receptor 3). At the I-275/Dr. Martin Luther King, Jr. Boulevard interchange, modeled receptors include residences in the northeast, southeast, southwest and northwest quadrants (Receptors 1, 2, 3, 4, 5, 7 and 8), business front walks in the southwest and northwest quadrants (Receptors 6 and 9) and a former school site in the southeast quadrant (Receptor 10). As with the selection of the worst-case microscale analysis areas, the premise of modeling the closest reasonable receptors is that CO concentrations at other reasonable receptors will be lower. The locations of the receptors are shown in Exhibits 3 and 4.

In accordance with FDOT guidelines, the computer models used in the microscale analysis include MOBILE5a and CAL3QHC.³ A summary of input parameters is provided in Table 3.

The MOBILE5a mobile source emissions model from EPA was used to compute area-specific motor vehicle emission factors. Hillsborough County has implemented a motor vehicle inspection/maintenance (I/M) program and anti-tampering program (ATP) as a means of reducing mobile sources of air pollution. Therefore, the I/M program and ATP options were implemented in MOBILE5a.

The CAL3QHC model was used to simulate the dispersion of motor vehicle emissions from roadways and at intersections. This model is designed to account for both free flow emissions from non-delayed traffic and excess emissions from delays occurring at intersections.

Peak-hour traffic volumes and roadway operating conditions were obtained from the <u>Tampa Interstate Study</u>: <u>Traffic Memorandum</u>, published separately.⁴ Other input data such as vehicle mix, operating mode and air temperature were obtained from the PD&E Manual, Part 2, Chapter 16. Input data for the modeled roadway links are provided in the Appendix of this report.

TABLE 3

SUMMARY OF MICROSCALE ANALYSES MODELING PARAMETERS Tampa Interstate Study Phase II

MOBILE5a and CAL3QHC						
Parameter	Value					
Region	Low Altitude					
Operating mode	20.6% cold, 27.3% hot					
Ambient temperature	52°F					
Vehicle mix	Default					
Analysis year	2010					
Stability class	D					
Wind speed	1 meter/second					
Wind direction	10° - 360° @ 10° intervals					
Mixing height	1,000 meters					
Persistence factors						
- Traffic	0.75					
- Meteorological	0.60					
Surface roughness	108 centimeters					
Inspection/maintenance	Yes					
- Program start year	1991					
- Stringency level	20%					
- First model year	1975					
- Last model year	2020					
- Pre - 1981 waiver rate	10%					
- 1981 and beyond waiver rate	10%					
- Compliance rate	98%					
- Program type	Centralized					
- Inspection frequency	Annual					
- Vehicle types	LDGV, LDGT1, LDGT2					
- Test type	Idle test					
- Alternate I/M credits	Default					
- Reid vapor pressures	10.5; 9.0					

In order to determine the most critical wind angles, a series of 36 wind directions (10°-360° at 10° intervals) was simulated over the modeling grid. Other simulated worst-case meteorological factors included an average wind speed of one meter per second, an atmospheric mixing height of 1,000 meters and Class D for atmospheric stability.

The computer modeling of worst-case traffic and meteorological data was conducted for the peak one-hour period. To account for the long-term variation in traffic and meteorological data over time, persistence factors were used to convert the one-hour modeled conditions to comparable worst-case eight-hour conditions. In this way, the results can be compared to the NAAQS which are also based on one-hour and eight-hour time periods. For this analysis, traffic and meteorological one-hour to eight-hour persistence factors of 0.75 and 0.60, respectively, were used. The eight-hour CO concentrations were derived from the one-hour values by the following formula:

$$CO_{8hr} = [(CO_{1hr} - background) \times MPF \times TPF] + background$$

Where: MPF = meteorological persistence factor (0.6)

TPF = traffic persistence factor (0.75)

Background = background CO.

To account for CO sources beyond the study area, a background CO value was added to the modeled one-hour and the computed eight-hour results. Based on the PD&E Manual and FDEP Guidelines, a background CO value of 2.0 ppm was used for the analysis.

2. Results

The results of the microscale analysis are presented in Tables 4 and 5. The results include contributions from future-year traffic and background CO concentrations. Both the one-hour and eight-hour values are provided.

As shown in Table 4, for the year 2010, the predicted worst-case one- and eight-hour CO concentrations in the vicinity of the I-275/North Boulevard interchange are 12.4 ppm and 6.7 ppm, respectively, under the No-Action Alternative. By comparison, the highest one- and eight-hour

TABLE 4

PREDICTED ONE-HOUR AND EIGHT-HOUR WORST-CASE CARBON MONOXIDE CONCENTRATIONS IN THE VICINITY OF THE I-275/NORTH BOULEVARD INTERCHANGE FOR THE YEAR 2010

Tampa Interstate Study - Phase II

	No-Action	Alternative	Preferred	Alternative	Location/Description ^b		
Receptor	1-Hour ^a (ppm)	8-Hour ^a (ppm)	1-Hour ^a (ppm)	8-Hour ^a (ppm)			
1	5.1	3.4	3.8	2.8	NE Quad/Front walk of Church		
2	12.4	6.7	7.1	4.3	SE Quad/Riverfront Park		
3	10.7	5.9	6.4	4.0	SW Quad/Business, front walk		
4	9.0	5.2	4.8	3.3	SW Quad/Residential backyard		
5	8.2	4.8	5.4	3.5	NW Quad/Multi-Family, residential side yard		
6	8.2	4.8	7.5	4.5	NW Quad/Multi-Family, residential side yard		
7	9.3	5.3	6.9	4.2	SE Quad/Riverfront Park		
8	7.2	4.3	6.5	4.0	NW Quad/Residential front yard		

^a Includes background concentration of 2.0 ppm.

National Ambient Air Quality Standards for Carbon Monoxide -- levels considered not to pose any significant health risks:

One-Hour Standard = 35 parts per million Eight-Hour Standard = 9 parts per million

b NE Quad = Northeast Quadrant NW Quad = Northwest Quadrant SE Quad = Southeast Quadrant SW Quad = Southwest Quadrant

TABLE 5

PREDICTED ONE-HOUR AND EIGHT-HOUR WORST-CASE CARBON MONOXIDE CONCENTRATIONS IN THE VICINITY OF THE I-275/DR. MARTIN LUTHER KING, JR. BOULEVARD INTERCHANGE FOR THE YEAR 2010

Tampa Interstate Study - Phase II

	No-Action	Alternative	Preferred	Alternative			
Receptor	1-Hour ^a (ppm)	8-Hour ^a (ppm)	1-Hour ^a (ppm)	8-Hour ^a (ppm)	Location/Description ^b		
1	9.9	5.6	6.2	3.9	NE Quad/Residential backyard		
2	9.1	5.2	8.0	4.7	NE Quad/Residential backyard		
3	10.7	5.9	9.2	5.2	SE Quad/Residential front yard		
4	10.6	5.9	5.7	3.7	SE Quad/Residential backyard		
5	10.0	5.6	5.9	3.8	SW Quad/Residential backyard		
6	14.9	7.8	11.6	6.3	SW Quad/Business, front walk		
7	9.9	5.6	7.9	4.7	NW Quad/Residential backyard		
8	16.3	8.4	11.3	6.2	SW Quad/Residential side yard		
9	9.6	5.4	10.3	5.7	NW Quad/Business, front walk		
10	12.4	6.7	8.6	5.0	SE Quad/Former site of Hillsborough County Adult High School		

^a Includes background concentration of 2.0 ppm.

National Ambient Air Quality Standards for Carbon Monoxide -- levels considered not to pose any significant health risks:

One-Hour Standard = 35 parts per million Eight-Hour Standard = 9 parts per million

NE Quad = Northeast Quadrant
 NW Quad = Northwest Quadrant
 SE Quad = Southeast Quadrant
 SW Quad = Southwest Quadrant

values for the Preferred Alternative are 7.5 ppm and 4.5 ppm, respectively. The projected reduction in CO levels for the Preferred Alternative is a result of improved motor vehicle mobility, faster-operating speeds, and reduction in stop-and-go driving that would be realized with the proposed improvements. CO concentrations are projected to remain below the NAAQS at all receptor sites in the vicinity of the I-275/North Boulevard interchange for the No-Action Alternative and the Preferred Alternative.

As shown in Table 5, the highest predicted one- and eight-hour CO concentrations under the 2010 No-Action Alternative at the I-275/Dr. Martin Luther King, Jr. Boulevard interchange are 16.3 ppm and 8.4 ppm, respectively. Under the 2010 Preferred Alternative, the highest one-hour value is 11.6 ppm and the highest eight-hour value is 6.3 ppm, a decrease compared to the No-Action Alternative. Again, CO concentrations are expected to remain below the NAAQS at all receptor sites in the vicinity of the I-275/Dr. Martin Luther King, Jr. Boulevard interchange for the No-Action Alternative and the Preferred Alternative.

III. CONSTRUCTION IMPACTS

Construction activities will cause minor short-term air quality impacts in the form of dust from earthwork and unpaved roads and smoke from open burning. These impacts will be minimized by adherence to all State and local regulations and to the FDOT <u>Standard Specifications for Road and Bridge Construction</u>.⁵

IV. CONCLUSION

Based on the microscale dispersion analysis results, the Tampa Interstate project will not cause, or contribute to, CO concentrations above the one- and eight-hour NAAQS for CO. The analysis indicates that CO levels under the Preferred Alternative will be lower than concentrations under the No-Action Alternative.

The project is in an area which has been designated as non-attainment for the ozone standards under the criteria provided in the Clean Air Act Amendments of 1990. This project is in conformance with the SIP because it will not cause violations of any of the National Ambient Air Quality Standards. This project is included in the urban area's current approved conforming TIP which was signed by the Secretary of the Florida Department of Transportation on August 8, 1994. This project is included in the area's conforming long-range plan. This project is included in the area's Conformity Determination report which was approved by FHWA/FTA on June 30, 1994.

V. AGENCY COORDINATION

Federal, state and local agencies were notified of the proposed action through the Advance Notification process. No comments concerning air quality issues were received in response to the Advance Notification packages.

In accordance with FHWA policies and regulations, a copy of the Draft Air Quality Report, dated December 1993, was submitted to state and local agencies for review. Comments were received from the Florida Department of Environmental Protection (FDEP), Hillsborough County Environmental Protection Commission, and Pinellas County Department of Environmental Management. Comments generally addressed discrepancies between FDEP and FDOT methodology for performing a microscale CO analysis and the need for an HC and NO_x evaluation to demonstrate conformity with the SIP.

The Draft Air Quality Report was reviewed and found to conform with established and accepted FDOT methodology as documented in Part 2, Chapter 16 of the PD&E Manual.

Comments concerning the analysis of ozone precursors (HC and NO_x) are a result of 40 CFR Part 51, which became effective December 27, 1993. The rule calls for an analysis of NO_x emissions in O_3 nonattainment areas; however, it also states that the analysis must be done on a regional basis. For determining conformity with the SIP, a project must be analyzed under a "baseline" and "action" scenario as part of the areawide transportation system. The relationship between this project and the

conforming TIP and Long Range Transportation Plan has been discussed. A project level evaluation of HC and NO_x is not necessary for the purpose of demonstrating conformity with the SIP.

Specific comments by agencies and responses to those comments are contained in the Appendix.

REFERENCES

- 1. <u>Tampa Interstate Study: Preliminary Engineering Report, Prepared for the Florida Department of Transportation; Prepared by Greiner, Inc., March 1991.</u>
- 2. <u>Project Development and Environment Manual</u>, Florida Department of Transportation, July 1988.
- 3. <u>MOBILE5a</u>, Chapter 2, U.S. Environmental Protection Agency, March 1993; <u>User's Guide to CAL3OHC</u>, U.S. Environmental Protection Agency, September 1990.
- 4. <u>Tampa Interstate Study: Traffic Memorandum</u>, Prepared for the Florida Department of Transportation; Prepared by Greiner, Inc., February 1991.
- 5. Florida Department of Transportation Standard Specifications for Road and Bridge Construction, State of Florida Department of Transportation, 1991.

APPENDIX

TABLE OF CONTENTS

<u>Item</u>	<u>Page</u>
I-275/North Boulevard, 2010 No-Build	A-1
I-275/North Boulevard, 2010 Build	A-4
I-275/Dr. Martin Luther King, Jr. Boulevard, 2010 No-Build	A-9
I-275/Dr. Martin Luther King, Jr. Boulevard, 2010 Build	A-14
MOBILE5a Emission Factors	A-19
Agency Comments	A-26

```
80.108. 0. 0. 8 0.5048 1 1
                      1275/NORTH BEVD 2010 NO 8012D
RECP :
                        220.
                                870.
                                           ŝ.
3869 3
                        35.
                                -130.
                                            i.
REGE (
                        -90.
                                -220,
                       -385.
RECF 4
                                -280.
RECP 5
                       -295.
                                 310.
                        -35.
RECP 5
                                300.
                                            6.
RECP 7
                        55.
                                -285.
RECP 8
                        -35,
                                465.
                                            6.
2010 NO BUILD
                                      21 1 0
 3
NORTH BLVD SB FREE AG
                        75. 1120.
                                     0. 550.
                                                 1516,13,1 0.44.
 1
NORTH BLVD SB FREE AG
                         0.
                             550.
                                    -10. 130.
                                                 1516.13.1 0.44.
•
NORTH BLVD SB FREE AG
                       -10.
                            130.
                                    -15. -130.
                                                 1342.13.1 0.44.
 1
                       -15. -130.
NORTH BLVD SB FREE AG
                                    -30. -870.
                                                 1342.13.1 0.44.
 1
NORTH BLVD SB LEFT AG
                        0. -115.
                                    0.
                                                 200.31.1 0. 12.
 1
NORTH BLVD NB FREE AG
                        20. -870.
                                     20. -130.
                                                 1098,13,1 0, 44,
1
                        20. -130.
NORTH BLVD NB FREE AG
                                     20. 130.
                                                 1221,13,1 0, 44,
 1
NORTH BLVD NB FREE AG
                            130.
                                     20. 550.
                        20.
                                                 1221.13.1 0.44.
 1
                        20. 550.
                                     95. 1120.
NORTH BLVD NB FREE AG
                                                 1221.13.1 0.44.
NORTH BLVD NB LEFT AG
                         0. 130.
                                     0.
                                                 244.31.1 0.12.
DAUREL STREET FREE AG -1300. -140.
                                   9. -130.
                                                 167.17.7 0. 44.
LAUREL STREET QUEU AG -40. -130. -1300. -140.
                                                  767.35.0 0. 24.
                        0. -130. 250. -130.
LAUREL PLACE PREE
                 ÀG
                                                  624.17.7 0.44.
GREEN STREET FREE
                  AG
                       320.
                             290.
                                   530.
                                          130.
                                                 762.17.7 0.44.
1
                       530.
                             130.
                                   0.
                                          130.
                                                 762.17.7 0. 44.
GREEN STREET PREE
                  AG
                                          130.
                                                 762.35.0 1.12.
GREEN STREET QUEU
                  A.G
                        35,
                             130
                                   530.
                                                 916.17,1 0, 44.
                             139, -1300.
                                          14.
GREEN STREET DEPART AG
                        8.
1
                                           40. 10650.35.0 29. 36.
                             180. 576.
[-275 WB
                  FU 1230.
                 PL 570.
                             40, -1760.
                                          40. 10650,25,0-20, 66.
1-275 WB
i
1-275 38
                 PL -1750.
                             -40, 570.
                                          -40. 10650.35.8 20. 35.
                            -40, 1230, 126, 10650,35,0 20, 35,
I-275 BB
                  FU 570.
1,000.4 1000. C.Y 10 1 36
```

CALSONC: LINE SOURCE DISPERSION MODEL - VERSION 2.0, JANUARY 1992

RUN: 2010 NO BUILD

PAGE 1

PAGE 2

DATE: 10/04/94 TIME: 13:27

SITE & METEOROLOGICAL VARIABLES

JOB: 1275/NORTH BLVD 2010 NO BUILD

VS = 0.0 cm/s VO = 0.0 cm/s ZO = 108. cm

U = 1.0 M/S CLAS = 4 (D) ATIM = 60. MINUTES MIXH = 1000. M AMB = 0.0 PPM

LINK VARIABLES

1

* LINK COORDINATES (FT) * LENGTH BRG TYPE VPH EF H W V/C QUEUE LINK DESCRIPTION * X1 Y1 X2 Y2 * (FT) (DEG) (G/MI) (FT) (FT) (VEH) ------1. NORTH BLVD SB FREE * 75.0 1120.0 0.0 550.0 * 575. 187. AG 1516. 13.1 0.0 44.0 2. NORTH BLVD S8 FREE * 0.0 550.0 -10.0 130.0 * 420. 181. AG 1516. 13.1 0.0 44.0 3. NORTH BLVD SB FREE * -10.0 130.0 -15.0 -130.0 * 260. 181. AG 1342. 13.1 0.0 44.0 4. MORTH BLVD SB FREE * -15.0 -130.0 -30.0 -870.0 * 740. 181. AG 1342. 13.1 0.0 44.0 5. NORTH BLVD SB LEFT * 0.0 -115.0 0.0 0.0 * 115. 360. AG 200. 31.1 0.0 12.0 6. NORTH BLVD NB FREE * 20.0 -870.0 20.0 -130.0 * 740. 360. AG 1098. 13.1 0.0 44.0 7. NORTH BLVD NB FREE * 20.0 -130.0 20.0 130.0 * 260. 360. AG 1221. 13.1 0.0 44.0 8. NORTH BLVD NB FREE * 20.0 130.0 20.0 550.0 * 420. 360. AG 1221. 13.1 0.0 44.0 9. NORTH BLVD NB FREE * 20.0 550.0 95.0 1120.0 * 575. 7. AG 1221. 13.1 0.0 44.0 10. NORTH BLVD NB LEFT * 0.0 130.0 0.0 0.0 * 130. 180. AG 244. 31.1 0.0 12.0 11. LAUREL STREET FREE * -1300.0 -140.0 0.0 -130.0 * 1300. 90. AG 767. 17.7 0.0 44.0 12. LAUREL STREET QUEU * -40.0 -130.0 -1300.0 -140.0 * 1260. 270. AG 767. 35.0 0.0 24.0 13. LAUREL PLACE FREE * 0.0 -130.0 250.0 -130.0 * 250. 90. AG 624. 17.7 0.0 44.0

* 570.0 -40.0 1230.0 120.0 * 679. 76. FL 10650. 35.0 20.0 36.0

0.0 130.0 * 530. 270. AG 762. 17.7 0.0 44.0

(qm/hr)

14. GREEN STREET FREE * 820.0 290.0 530.0 130.0 * 331. 241. AG 762. 17.7 0.0 44.0

16. GREEN STREET QUEU * 35.0 130.0 530.0 130.0 * 495, 90. AG 762, 35.0 0.0 12.0 17. GREEN STREET DEPART * 0.0 130.0 -1300.0 140.0 * 1300. 270. AG 936. 17.7 0.0 44.0 18. I-275 W8 * 1230.0 180.0 570.0 40.0 * 675, 258. FL 10650. 35.0 20.0 36.0

JOB: I275/NORTH BLVD 2010 NO BUILD RUN: 2010 ND BUILD

DATE: 10/04/94 TIME: 13:27

21. I-275 EB

ADDITIONAL QUEUE LINK PARAMETERS

15. GREEN STREET FREE * 530.0 130.0

LINK DESCRIPTION	*	CYCLE	RED	CLEARANCE	APPROACH	SATURATION	IDLE	SIGNAL	ARRIVAL
	*	LENGTH	TIME	LOST TIME	VOL	FLOW RATE	EM FAC	TYPE	RATE

* (SEC) (SEC) (SEC) (VPH) (VPH)

RECEPTOR LOCATIONS

	*	C00	RDINATES (F	()	*
RECEPTOR	*	Χ	Υ	2	*
~	*				*
1. RECP 1	*	220.0	870.0	6.0	*
2. RECP 2	*	85.0	-180.0	6.0	*
3. RECP 3	*	-90.0	-220.0	6.0	*
4. RECP 4	*	~385.0	-280.0	6.0	*
5. RECP 5	*	-295.0	310.0	6.0	*
6. RECP 6	*	-85.0	300.0	6.0	*

A-2

ł

JOB: I275/NORTH BLVD 2010 NO BUILD RUN: 2010 NO BUILD

PAGE 3

MODEL RESULTS

1

REMARKS: In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 10.-360.

WIND * CONCENTRATION ANGLE * (PPM) (DEGR)* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 0.0 7.2 7.2 5.4 0.0 0.5 1 } 20. * 0.0 7.1 7.4 5.6 0.1 0.7 5.3 1.5 30. * 0.0 7.6 7.2 5.9 0.2 0.7 5.4 1.4 40. * 0.0 7.9 7.4 0.2 0.6 5.7 1.1 6.1 50. * 0.0 8.5 8.0 6.6 0.3 0.6 6.3 1.0 60. * 0.0 9.6 8.7 7.0 0.2 0.5 6.6 0.9 70. * 0.0 9.3 8.4 6.6 0.2 0.5 5.1 0.8 80. * 0.0 5.6 5,2 4.0 0.4 0.8 2.0 0.8 90. * 0.0 1.5 1.9 1.2 1.9 0.3 1.6 1.2 100. * 0.0 0.1 0.2 3,9 0.0 0.6 4.0 2.1 110. * 0.1 0.0 0.5 0.2 5.4 5.5 0.0 3.4 120. * 0.0 0.7 0.5 0.2 6.2 0.0 6.2 4.4 130. * 1.6 0.0 0.5 0.2 5.6 6.2 0.0 4.9 140. * 2.1 5.3 0.0 0.5 0.2 5.8 0.0 5.0 150. * 2.1 0.0 0.6 0.1 5.4 5.8 0.0 4.8 160. * 2.2 0.0 0.6 0.0 5.3 5.9 0.0 4.8 170. * 2.4 0.0 0.5 0.0 5.1 5.5 0.1 5.2 180. * 2.4 0.3 0.3 0.0 5.0 5.5 0.5 4.7 190. * 0.5 2.6 0.1 0.0 5.0 5.2 0.8 4.3 200. * 2.5 0.6 0.0 0.0 5.1 5.3 1.0 3.7 210. * 2.9 0.6 0.0 0.0 5.2 5.3 0.9 220, * 3.1 0.6 0.0 0.0 5.3 5.5 0.9 4.1 230. * 0.6 3.1 0.0 0.0 5.7 5.9 0.7 4.3 240. * 2.6 0.6 0.0 0.0 6.0 6.2 0.7 4.3 250. * 1.4 0.5 0.0 0.0 5.5 6.0 0.7 3.5 260. * 0.6 1.6 0.5 0.1 3.2 4.0 0.9 1.6 270. * 0.4 5.1 2.7 1.2 0.9 1.3 2.4 0.3 280. * 0.4 9.3 6.6 3,8 0.1 0.1 5.4 0.0 290. * 0.4 10.4 8.4 6.1 0.0 0.0 7.3 0.0 300. * 0.4 9.7 8.1 0.0 6.6 0.0 7.3 0.0 310. * 0.4 8.8 7.5 6.3 0.0 0.0 7.0 0.0 320. * 8.5 0.4 7.1 6.0 0.0 0.0 6.5 0.0 330. * 0.2 8.1 6.7 5.6 0.0 0.0 6.4 0.0 340. * 0.1 7.7 6,6 5.5 0.0 0.0 0.0 6.4 350. * 0.0 7.9 6.5 5.4 0.0 0.0 6.1 0.1 360. * 0.0 7.7 6.9 5.4 0.0 0.2 6.1 0.5 MAX * 3.1 10.4 8.7 7.0 6.2 6.2 7.3 5.2 DEGR. * 220 290 60 60 120 300 170 120

RECP (RECP (RE		-136. -436. -275. -70. -5.	-	-285. -315. 260. 240. -365. 380.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	9. 9.8		i :
NORTH BLVD 1	SB APP A	G 170.	1030.	. 60.	565.	1516.13.1	0.44.	
NORTH BLVD 2	SB APP A	G 60.	565.	5.	200.	1516.13.1	0.44.	
NORTH BLVD 60					565,	0.24.	2	
1 NORTH BLVD 2	SB DEPARTA	G 5.	200.	-115.	-935.	1342.13.1	0.44.	
NORTH BLVD 60	SB LEFT A				60.	0. 12.	1	
	NB APP A	G -70.	-935.	0.	-200.	1098.13.1	0.44.	
60	NB QUEU A	G -5. 2.0	-225. 1098	-70. 214.	-935,	0. 24,	2	
1 NORTH BLVD 1	NB DEPARTAC	9.	-200.	80.	565.	1221.13.1	0,44.	
	NB DEPARTA	3 80.	565.	190.	1930.	1221.13.1	0, 44,	
NORTH BLVD 60	NB LEFT AC	1 20. 2.0	200. 244	0. 214.	0.	0. 12.	1	
I WB RAMP WB	APP AC	3 25 0.	-170.	205.	175.	762.17.7	0.44.	
	APP AC	3 205.	175,	25.	200.	762.17.7	0.44.	
WB RAMP WB 60				205. 214.	175.	0. 24.	2	
1 WB RAMP WB I	DEPART AC	35.	200,	-1030.	160.	936.17.7	0.44.	
	APP AC	G -1060.	-180.	-20.	-200.	767.17.7	0. 32.	
EB RAMP EB 60	åê Anen Yo	3 -50. 2.0		-350. 214.	-200,	0.36.	4	
EB RAMP BB	DEPART AC	-20.	-200.	220.	-225.	824.17.7	0.44.	
-	DEPART AC	220.	-225.	580,	-545,	624.11.7	9. 44.	
	CAL FL	. 1700.	150.	590.	125.	2293.11.7	25. 55.	
I-275 WB 10	ICAL FL	, 590,	110.	-45.	100.	5231.12.2	25. 68.	
•	CAL PL	-45,	100.	-1030.	100.	6427.11.7	25. 80.	
I-275 WB 60	CAL FL	1030.	100.	-1750.	70.	7155.11.7 A -		

A-4

:									
RAMP A		PL	1400,	200.	-45,	;50.	1196.11.7	28.	44.
1-275 WB	MAIN	£.	1700.	65.	800.	65.	6528. 9.9	25.	80.
i I-275 WB	MAIN	FL	300.	40.	-1765.	15.	3498, 9.9	25,	56.
I I-275 BB	LOCAL'	FL	-1760.	-120,	-1085.	-115.	7155.11.7	25.	30.
1 I-275 EB	LOCAL	PL	-1085.	-115,	100.	-145.	6427.11.7	25.	80.
1 I-275 EB	LOCAL	PL	100.	-145.	850.	-140.	3489,13.1	25.	68.
1 I-275 RB	LOCAL	FL	850.	-140.	1450.	-140.	1817.13.1	25.	56.
1									
1									
I-275 EB							3495, 9.9		
	MAIN 1000. 0.Y			-45.	1700.	-70.	6538, 9.9	35.	80.

PAGE 1

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0, JANUARY 1992

JOB: I275/NORTH BLVD 2010 BUILD

DATE: 10/04/94 TIME: 13:31

RUN: 2010 BUILD

SITE & METEOROLOGICAL VARIABLES

1

LINK VARIABLES -----

LINK DESCRIPTION *	LI	LINX COORDINATES (FT) X1 Y1 X2 Y2				BRG TYPE	VPH	EF	H W V/C	QUEUE
*	X1	Y1	X2	Y2 *	(FT)	(DEG)		(G/MI)	(FT) (FT)	(WEH)
1. NORTH BLVD SB APP *	170.0	1030.0	60.0	565.0 *	478.	193. AG	1516.	13.1	0.0 44.0	
2. NORTH BLVD SB APP *		565.0	5.0	200.0 *	369.	189. AG	1516.	13.1	0.0 44.0	
3. NORTH BLVD SB QUEU *			139.8						0.0 24.0 1.09	46.0
4. NORTH BLVD SB DEPART*	5.0	200.0	-115.0	-935.0 *	1141.	186. AG	1342.	13.1	0.0 44.0	
5. NORTH BLVD S8 LEFT *	-20.0	-200.0	-11.8	-129.1 *	71.	7. AG	450.	100.0	0.0 12.0 0.84	3.6
6. NORTH BLVD NB APP *	-70.0	-935.0	0.0	-200.0 *	738.	5. AG	1098.	13.1	0.0 44.0	
7. NORTH BLVD NB QUEU *	-5.0	-225.0	-19.9	-387.9 *	164.	185. AG	651.	100.0	0.0 24.0 0.94	8.3
8. NORTH BLVD NB DEPART*	0.0	-200.0	80.0	565.0 *	769.	6. AG	1221.	13.1	0.0 44.0	
9. NORTH BLVD NB DEPART*	80.0	565.0	190.0	1030.0 *	478.	13. AG	1221.	13.1	0.0 44.0	
10. NORTH BLVD NB LEFT *	20.0	200.0	16.8		32.		230.	100.0	0.0 12.0 0.29	1.6
11. WB RAMP WB APP *	250.0	-170.0		175.0 *	348.	353. AG	762.	17.7	0.0 44.0	
12. WB RAMP WB APP *	205.0	175.0	25.0	200.0 *	182.	278. AG	762.	17.7	0.0 44.0	
13. WB RAMP WB QUEU *			586.5			100. AG	823.	100.0	0.0 24.0 1.10	27.1
14. W8 RAMP WB DEPART *	25.0	200.0	-1030.0	160.0 *	1056.	268. AG	936.	17.7	0.0 44.0	
15. E8 RAMP E8 APP * 16. E8 RAMP EB QUEU *	-1060.0	-180.0	-20.0	-200.0 *	1040.	91. AG	767.	17.7	0.0 32.0	
16. E8 RAMP EB QUEU *	-50.0	-205.0	-104.4	-204.1 *	54.	271. AG	1119.	100.0	0.0 36.0 0.56	2.8
17. EB RAMP EB DEPART *	-20.0	-200.0	220.0	-225.0 *	241.	96. AG	624.	17.7	0.0 44.0	
18. EB RAMP EB DEPART *		-225.0				132. AG				
19. I-275 W8 LOCAL *	1700.0	150.0	590.0	135.0 *	1110.	269, FL	2293.	11.7	25.0 56.0	
20. I-275 WB LOCAL *	590.0	110.0	-45.0	100.0 *	635.	269. FL	5231.	12.2	25.0 68.0	
21 T-275 WR LOCAL X	-45 A	100.0	-1030.0	100.0 *	985.	270. FL	6427.	11.7	25.0 80.0	
22. I-275 WB LOCAL *	-1030.0		-1750.0	70.0 *	721.	268. FL	7155.	11.7	25.0 80.0	
23. RAMP A *	1400.0	200.0	-45.0				1196.	11.7	25.0 44.0	
22. I-275 WB LOCAL * 23. RAMP A * 24. I-275 WB MAIN * 25. I-275 WB MAIN * 26. I-275 EB LOCAL *	1700.0	65.0	800.0	65.0 *	900.	270. FL	6538.	9.9	25.0 80.0	
25, I-275 W8 MAIN *	800.0	40.0			2565.		3495.	9.9	25.0 56.0	
26. I-275 E8 LOCAL *	-1760.0	-130.0	-1085.0	-115.0 *	675.	89. FL	7155.	11.7	25.0 80.0	
27. I-275 EB LOCAL *	-1085.0	-115.0	100.0	-145.0 *	1185.	91. FL	6427.	11.7	25.0 80.0	
28. I-275 EB LOCAL *	100.0	-145.0	850.0	-140.0 *	750.	90, FL	3489.	13.1	25.0 68.0	
29. I-275 EB LOCAL * * 30. RAMP C *	850.0	-140.0	1450.0	-140.0 *	600.	90. FL	1817.	13.1	25.0 56.0	
30, RAMP € *	850.0	-195.0	1430.0			92. FL				
31. I-275 EB MAIN *	-1770.0	-50.0	290.0				3495.	9.9	25.0 56.0	
32. I-275 E8 MAIN *	290.0	-45.0	1700.0	-70.0 *	1410.	91. FL	6538.	9.9	25.0 80.0	

PAGE 2

JOB: I275/NORTH BLVD 2010 BUILD

DATE: 10/04/94 TIME: 13:31

1

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	*	LENGTH (SEC)	TIME (SEC)	LOST TIME (SEC)	VOL (VPH)	FLOW RATE (VPH)	EM FAC (gm/hr)	TYPE	RATE
3. NORTH BLVD SB QUEU	**								

RUN: 2010 BUILD

5.	NORTH BLVD SB	LEFT *	60	47	2.0	200	1600	214.00	1	3
7.	NORTH BLVD NB	QUEU *	60	34	2.0	1098	1600	214.00	1	3
10,	NORTH BLVD NB	LEFT *	60	24	2.0	244	1600	214.00	1	3
13.	W8 RAMP WB QUE	U *	60	43	2.0	762	1600	214.00	1	3
16.	EB RAMP EB QUE	U *	60	39	2.0	767	1600	214.00	1	3

RECEPTOR LOCATIONS

	*	COORDINATES (FT)					
RECEPTOR	*	X	Y	Z	*		
*	*				*		
1. RECP 1	*	285.0	775.0	6.0	*		
2. RECP 2	*	60.0	-265.0	6.0	*		
3. RECP 3	*	-130.0	-285.0	6.0	*		
4. RECP 4	*	-430.0	-315.0	6.0	*		
5. RECP 5	*	-275.0	260.0	6.0	*		
6. RECP 6	*	-70.0	240.0	6.0	*		
7. RECP 7	*	15.0	-365.0	6.0	*		
8. RECP 8	*	-5.0	380.0	6.0	*		

JOB: I275/NORTH BLVD 2010 BUILD RUN: 2010 BUILD

MODEL RESULTS

1

REMARKS: In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 10.-360.

WIND * CONCENTRATION ANGLE * (PPM) (DEGR)* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 10. * 0.0 2.8 3.7 1.9 0.0 0.8 3.1 2.0 20. * 0.0 2.5 4.1 2.1 0.1 1.5 2.3 2.9 30. * 0.0 2.6 4,3 2.6 0.5 1.7 1.9 3.0 40. * 0.0 2.5 4,4 2.7 0.6 1.5 1.9 2.6 50. * 2.6 0.0 4.3 2.7 0.8 1.5 2.1 2.3 60. * 2.5 1.3 1.8 2.2 0.0 4.0 2.8 0.6 * 70. 0.0 2.3 3.5 2.8 0.5 1.3 1.6 2.0 80. * 0.0 1.9 2.8 2.2 0.6 1.6 1.0 2.0 90. * 2.2 0.0 1.0 2.0 2.9 0.2 1.1 1.8 3.0 100. * 0.0 0.1 1.3 0.3 4.7 0.1 3.0 110. * 0.1 0.1 1.2 0.3 3.4 5.5 0.0 3.6 120. * 0.4 0.1 1.1 0.2 2.8 4.4 0.0 4.2 130. 3.7 * 0.7 0.0 0.9 0.2 2.4 0.0 4.5 140. * 0.8 0.0 0.2 2.5 3.0 0.0 4.5 0.7 150. * 0.9 0.0 0.6 0.1 2.6 2.9 0.0 4 4 160. * 0.9 0.0 0.5 0.0 2.7 2.9 0.0 4.5 170. * 1.0 0.0 0.5 0.0 2.6 3.3 0.1 4.1 180. * 0.1 0.3 0.0 2.3 3.2 3.5 1.1 0.4 190. * 1.2 0.4 0.1 0.0 2.3 2.7 0.7 2.7 200. * 0.8 2.6 1.9 1.4 0.0 0.0 2.3 1.1 210. * 1.8 1.1 0.0 0.0 2.3 2.6 1.1 1.7 220. * 1.8 1,4 0.0 0.0 2.4 2.6 1.2 1.7 230. * 1.8 1.6 0.0 0.0 2.5 2.9 1.6 1.9

PAGE 3

```
240. * 1.7 1.6 0.0 0.0
                          2.7 3.1 1.7
                                         1.9
250. * 1.4
            1.5 0.0
                      0.0
                           2.7 3.1
                                     1.9
                                         1.8
260. *
        0.9
            1.6
                 0.1
                      0.0
                           1.9
                               2.5
                                     2.1
                                         1.0
270. *
        0.8
            2.9
                 0.9
                      0.4
                           0.7
                                1.2
                                     2.5
                                         0.2
280. * 0.8
            4.2
                 2.1
                      1.3
                           0.1
                               0.3
                                     3.4
                                         0.0
290. *
       0.8
            5.1
                 2.5
                      2.1
                           0.0
                                0.0
                                     4.1
                                          0.0
300. *
                      2.3
                                     4.3
        0.8
            4.6
                 2.6
                           0.0
                                0.0
                                         0.0
310. *
       0.9
            4.3
                 2.5
                      2.3
                           0.0
                                0.0
                                     4.4
                                         0.0
320. *
                                     4.8 0.0
                      2.1
                           0.0
                               0.0
        8.0
            3.8
                 2.4
330. *
       0.8 3.5
                 2.3
                      2.1
                           0.0
                                0.0
                                     4.8 0.0
340. *
       0.4
            3.2
                 2.3
                      2.0
                           0.0
                                0.0
                                     4.9 0.0
350. * 0.1
            3.4
                 2.3
                      1.9
                           0.0
                                0.0
                                     4.7
                                         0.1
360. * 0.0
                      2.1
                                        0.8
            3.5
                 2.7
                           0.0
                                0.2
                                     3.8
MAX * 1.8 5.1 4.4 2.8
                          3.4 5.5 4.9 4.5
DEGR. * 210 290
                 40
                      70 110 110 340 130
```

THE HIGHEST CONCENTRATION IS 5.50 PPM AT 110 DEGREES FROM REC6.

1275/MLE BLVD 201	0 10	80110		740	0.108.	0. 0.10	ô.	3048 1	:
REOP 1		195.							
280P 2		320.							
RECP 3		680.							
RECP 4		195.			8.				
					ę,				
RECP 5			-						
RECP 6					8.				
RECP 7		-350.		165.	6.				
RECP 8		-650.		-40,	6.				
RECP 9		-630.		105.	6.				
RECP 10		200		-75	6.				
		ណ្ឌប ÷			4 1 0				
2010 NO BUILD				4'	1 1 V				
I MLK WB APP 2						3162.35.0	0.	24.	
MTK AB ÖNEN	AG	165.	20.	1000	. 20.	0.24.	2	ı	
80	4.3	2.0	3162	214.					
1		1 10	0100	21.1					
NEK WB DEPART									
MLK WB DEPART	AG	-160.	20.	-1000	, 25.	3167,35.0	0.	24.	
2									
TTRU BW XUM 08						0. 12.	1		
1									
MLK EB APP	AG	-1000.	-5,	-160	20.	2809.35.0	0.	24.	
2									
MLK EB QUEU	4 C	-180	-20	-1000	-5.	0.36	2		
						9, 99,	٠		
80	43	۷.۷	4100	614.					
1									
MUK EB DEPART	AG	-i60.	-20.	160	-15.	2861.35.0	0.	34.	
Ĭ.									
MUN EB DEPART	AG	160.	- 5	1000.	-15.	3822.35.0	0	24.	
2				1000					
	1.0	110	r	ð		A 16	,		
MUK BB DEFT						V. 14.	1		
80	59	2.0	554	214.					
•									
NB RAMPS APP	ÀG	80.	-770.	155.	0.	1054.35.0	6.	12.	
Ž									
	1.75	: ca	0.5	a a	220	0.16	*		
NB RAMPS NB QUEU						0, 12,	i		
	59	2.0	515	214.					
2									
NB RAMPS NB LEFT	AG	140.	-35,	130.	-280.	0, 24.	2		
		2.0							
1	**	•••		2					
	1.3	125	n	7.0	215	1102 01 1	a	1.0	
NB RAMP NB DEPART	გს	199,	V.	10.	110.	1130,31,1	2.	12.	
SB RAMPS SB APP	AG	-80.	730.	-160.	0.	1388.31.1	0.	12.	
2									
SB RAMPS SB QUEU	AG	-160.	65.	-30.	730.	0.36.	3		
		2.0					•		
2	U ip	L. ()	UII	5171					
		_							
SB RAMPS SB LEFT						0.24.	2		
80	62	2.0	711	214.					
1									
SB RAMP SB DEPART	4 G	-160	P.	-20	-910	1288.35.6	6.	12.	
	иu	100,	Ų.	90.	C1V.	14001001W			
T PAE AD	/3 =		0.0.0.0		500	00:- 0- 0	0.0	6.0	
	Ϋ́L	-40.	2000.	-40.	730.	9211.35.0	36,	35.	
1									
1-275 38	Fl	-40}.	720.	-40,	-910.	7823.35.0	2¢.	36.	
								4-9	

A-9

•								
1-275 88	PG	-40,	-310.	-40.	-3000.	3112.35.0	20.	38.
I-375 NB	PL	40.	-2000.	40.	-780.	7458.31.1	20.	16.
1-275 NB	919	10.	-780,	40.	720.	6401.31.1	29.	36.
i I-275 NB 1.000.4 1000.			720,	40.	2000.	7536.31.1	20.	36.

JO8: 1275/MLK BLVD 2010 NO BUILD

DATE: 10/04/94 TIME: 13:43

RUN: 2010 NO BUILD

SITE & METEOROLOGICAL VARIABLES -----

1

LINK VARIABLES ------

LINK DESCRIPTION	*	L	INK COORDII	NATES (FT)	*	LENGTH	BRG TYPE	VPH	٤F	H W V/C QUEUE
	* *-	X1	Y1	X2	Y2 *	(FT)	(DEG)		(G/MI)	(FT) (FT) (VEH)
1. MLK W8 APP	*			0.0	20.0 *		270. AG		35.0	0.0 24.0
2. MLK WB QUEU	*	165.0	20.0	9902.2	20.0 *	9737.	90. AG	617.	100.0	0.0 24.0 2.40 494.6
3. MLK W8 DEPART	*	150.0	20.0	-160.0	20.0 *	310.	270. AG	3119.	35.0	0.0 24.0
4. MLK W8 DEPART	*	-160.0	20.0	-1000.0	25.0 *	840.	270. AG	3167.	35.0	0.0 24.0
5. MLK WB LEFT	*	-140.0	5.0	2256.1	5.0 *	2396.	90. AG	395.	100.0	0.0 12.0 1.50 121.7
6. MLK EB APP	*	-1000.0	-5.0	-160.0	-20.0 *	840.	91. AG	2809.	35.0	0.0 24.0
7. MLK EB QUEU	*	-180.0	-20.0	-1035.5	-4.4 *	856.	271. AG	926.	100.0	0.0 36.0 1.08 43.5
8. MLK EB DEPART	*	-160.0	-20.0	160.0	-15.0 *	320.	89. AG	2861.	35.0	0.0 24.0
9. MLK EB DEPART	*	160.0	-15.0	1000.0	-15.0 *	840.	90. AG	2822.	35.0	0.0 24.0
10. MLK EB LEFT	*	130.0	-5.0	-2301.7	-5.0 *	2432.	270. AG	423.	100.0	0.0 12.0 1.63 123.5
11. NB RAMPS APP	*	80.0	-770.0	155.0	0.0 *	774.	6. AG	1054.	35.0	0.0 12.0
12. NB RAMPS NB QUEU	*	160.0	-35.0	-59.1	-2048.1 *	2025.	186. AG	423.	100.0	0.0 12.0 1.51 102.9
13. NB RAMPS NB LEFT	*	140.0	-35.0	136.0	-133.8 *	99.	182. AG	847.	100.0	0.0 24.0 0.79 5.0
14. NB RAMP NB DEPART	*	155.0	0.0	70.0	715.0 *	720.	353. AG	1136.	31.1	0.0 12.0
15. SB RAMPS SB APP	*	-80.0	730.0	-160.0	0.0 *	734.	186. AG	1388.	31.1	0.0 12.0
16. SB RAMPS SB QUEU	*	-160.0	65.0	-149.2	155.0 *	91.	7. AG	1335.	100.0	0.0 36.0 0.80 4.6
17. SB RAMPS SB LEFT	*	-145.0	65.0	-94.4	1025.8 *	962.	3. AG	890.	100.0	0.0 24.0 1.27 48.9
18. SB RAMP SB DEPART	*	-160.0	0.0	-80.0	-910.0 *	914.	175. AG	1288.	35.0	0.0 12.0
19. I-275 SB	*	-40.0	2000.0	-40.0	720.0 *	1280.	180. FL	9211.	35.0	20.0 36.0
20. I-275 SB	*	-40.0	720.0	-40.0	-910.0 *	1630.	180. FL	7823.	35.0	20.0 36.0
21. I-275 S8			-910.0	-40.0	-2000.0 *	1090.	180. FL	9112.	35,0	20.0 36.0
22. I-275 NB	*	40.0	-2000.0	40.0	-780.0 *	1220.	360. FL	7455.	31.1	20.0 36.0
23. I-275 NB	*	40.0	-780.0	40.0	720.0 *	1500.	360. FL	6401.	31.1	20.0 36.0
24. I-275 N8	*	40.0	720.0	40.0	2000.0 *	1280.	360. FL	7536.	31.1	20.0 36.0

PAGE 2

PAGE 1

JOB: 1275/MLK BLVD 2010 NO BUILD

DATE: 10/04/94 TIME: 13:43

1

RUN: 2010 NO BUILD

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (YPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2. MLK W8 QUEU	*	80	43	2.0	3162	1600	214.00	1	3
S. MLK WB LEFT	*	80	55	2.0	629	1600	214.00	1	3
7. MLK EB QUEU	*	80	43	2.0	2150	1600	214.00	1	3
10. MLK EB LEFT	*	80	59	2.0	554	1600	214.00	1	3
12. NB RAMPS NB QUEU	*	80	59	2.0	515	1600	214.00	1	3
13. NB RAMPS NB LEFT	*	80	59	2.0	539	1600	214.00	1	3
16. SB RAMPS SB QUEU	*	80	62	2.0	677	1600	214.00	1	3
17. SB RAMPS SB LEFT	*	80	62	2.0	711	1600	214.00	1	3

RECEPTOR LOCATIONS

			;	*	COORDINATES (FT)					
	RECE	PTOR	;	ŧ	Х		Y	Z	*	
				k					‡	
1.	RECP	1	,	ŗ	185.	0	530.0	6.0	*	
2.	RECP	2	;	ţ	320.	. 0	200.0	6.0	*	
3.	RECP	3	*	ķ	680.	0	-65.0	6.0	*	
4.	RECP	4	*	K	195.	0	-495.0	6.0	*	
5.	RECP	5	1	ſ	-200,	0	-500.0	6.0	*	
6.	RECP	6	*	ţ	-240,	0	-75.0	6.0	*	
7.	RECP	7	k	(-350.	0	165.0	6.0	*	
8.	RECP	8	*		-650.	0	-40.0	6.0	*	
9,	RECP	9	t t	(-630.	0	105.0	6.0	*	
10.	RECP	10	1	(290.	0	-75.0	6.0	*	

JOB: 1275/MLK BLVD 2010 NO BUILD RUN: 2010 NO BUILD

MODEL RESULTS

1

REMARKS: In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 10.-360.

→ WIND * CONCENTRATION
ANGLE * (PPM)

(DEGR	*()	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9	REC10
10.	*	0.4	0.1	4.4	2.2	8.0	11.6	2.7	8.0	0.6	4,2
20.	*	0.0	0.0	4.4	1.1	7.9	12.9	4.4	9.3	1.8	3.9
30.	*	0.0	0.0	4.6	1.3	7.5	12.3	4.5	10.5	2.5	4.2
40.	*	0.0	0.0	4.8	1.2	6.9	11.0	4.4	10.9	2.7	4.4
50.	*	0.0	0.0	5.1	1.3	6.8	9.9	4.0	11.7	2.8	4.7
60.	*	0.0	0.0	5.4	0.9	6.4	10.0	4.0	12.3	2.7	5.0
70.	*	0.0	0.0	5.1	0.6	5.9	10.6	3.8	13.8	2.6	5.4
80.	*	0.0	0.1	4.3	0.5	5.6	10.4	4.3	14.3	3.4	5.0
90.	*	0.2	0.7	2.4	0.2	5.2	8.4	5.9	11.6	5.6	3.0
100.	*	0.5	1.7	0.6	0.0	4.9	5.6	7.7	5.9	7.6	0.8
110.	*	0.5	2.4	0.0	0.0	4.9	4.6	7.9	2.6	7.3	0.0
120.	*	0.9	2.7	0.0	0.0	5.1	4.6	7.4	2.2	7.2	0.0
130.	*	1.2	2.7	0.0	0.0	5.3	4.7	6.6	2.4	7.0	0.0
140.	*	1.2	2.4	0.0	0.0	5.8	5.1	6.7	2.4	6.9	0.0
150.	*	1.3	2.4	0.0	0.0	6.3	5.5	6.9	2.4	6.6	0.0
160.	*	1.1	2.3	0.0	0.0	6.4	5,8	7.1	1.8	6.0	0.0
170.	*	1.9	2.4	0.0	0.3	5.1	4.6	6.0	0.6	4.6	0.1
180.	*	4.9	3.5	0.0	2.1	2.2	2.0	3.8	0.0	4.1	1.2
190.	*	7.9	5.8	0.4	5.1	0.4	0.3	3.0	0.0	3.9	3.5
200.	*	7.6	7.1	1.5	6.4	0.0	0.0	2.9	0.0	3.9	5.0
210.	*	7.4	7.1	2.4	6.4	0.0	0.0	2.9	0.0	4.1	4.7
220.	*	7.4	6.7	2.5	5.9	0.0	0.0	3.1	0.0	4.3	4.5
230.	*	7.2	6.6	2.4	5.5	0.0	0.0	3.3	0.0	4.5	4.2
240.	*	6.5	6,6	2.1	5.2	0.0	0.0	3.4	0.0	4.5	4.2
250.	*	5.9	6.7	2.0	5.0	0.0	0.1	3.0	0.4	3.9	4.3
260.	*	5.3	5.9	3.6	4.9	0.0	1.0	1.9	1.8	2.4	5.7
270.	*	5.2	4.7	6.8	5.0	0.0	3.4	0.6	5.4	1.0	7.9

PAGE 3

```
280. * 5.1 3.7
                  8,7
                       5.2
                            0.1 6.0 0.0 8.9
                                                  0.2 10.3
290. *
        5.1
              3.6
                   8.4
                        5.8
                             0.4
                                  7.0
                                        0.0 10.5
                                                  0.0 10.4
300. *
                   7.9
                             0.9
                                            9.9
                                                  0.0 9.8
        5.6
             3.8
                        6.5
                                  6.6
                                        0.0
310. *
                                            9.0
        5.8
              3.9
                   7.5
                        6.9
                             1.4
                                  6.1
                                        0.0
                                                  0.0
                                                       9.2
                                            8.4
320. *
                   7.3
                                        0.0
                                                  0.0
                                                      9.0
        6.1
             4.1
                        7.4
                             1.5
                                  5.6
330. *
        6.4
              4.2
                   6.9
                        7.8
                             1.4
                                   5.4
                                        0.0
                                             8.0
                                                   0.0
                                                        8.8
340, *
        6.3
             4.1
                   5.9
                                   5.2
                                        0.0
                                             7,5
                                                        8.8
                        8.6
                             1.3
                                                  0.0
350. * 4.9
              2.6
                   4.9
                        8.3
                             2.4
                                   5.6
                                        0.1
                                             7.3
                                                  0.0
                                                      7.6
360. * 2.1
             0.8
                                        0.8
                                            7.5
                                                  0.0
                   4.4
                        4.9
                             5.1
                                  8.1
MAX * 7.9 7.1
                 8.7
                       8.6
                             8.0 12.9
                                       7.9
                                           14.3
                                                  7.6 10.4
DEGR. * 190
            200
                  280
                       340
                             10
                                   20
                                       110
                                             80
                                                  100
                                                       290
```

1275/MUK BLVD 20 RECP 1 RECP 2 RECP 4 RECP 5 RECP 6 RECP 7 RECP 9 RECP 9 RECP 10 2010 BUILD	6 2 2 2 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	85. 499 20. 178 8093 20521 20536 35103 5076 10. 76 30116	 6. 6. 6. 6. 6. 6. 	9. 0.10	0.3048	: 1
MLK WB APP	AG 100	25.	0. 25.	3162.35.0	0.36.	
HER AB DETTA). 25. 1 2.0 25 33 2		0.48.	4	
MUK WB GERT 120), 0, 2,0 629 2		0. 24.	2	
	AG). 25. - 1	000. 30.	3167.35.0	0.36.	
l MLK EB APP 2	AG -100), -36.	040.	2809.35.0	0.36.	
ALK EB DETAA), -36, -1 1.0 2255 2		0, 48,	4	
MLK EB LEFT 120). 0 1.0 554 2		0. 24.	2	
	AG (40. 1	00040.	2822.35.0	0, 24,	
I SB RAMP APP 2	AG -148	. 1900, -	150. 0.	1388.17.7	0, 44,	
SB RAMP DELAY				0.34.	2	
		. 45 .0 711 2		0. 24.	2	
i SB_RAMP_DEPART	AG -15(. 0	1451000.	1283.17.7	ŷ. 44.	
1 MB RAMP APP 2	AG 145	1000.	145. j.	1054.17.7	0.44.	
NB RAMP DELAY 120 2				e. 24 .	2	
NB RAMP LEFT 120		50, .0 539 2	150550. 14.	6. 24.	2	
NB RAMP DEPART	AG 145	. ◊.	145. 1000.	1136.17.7	0.44,	
	AG -60	. 1000.	-60800.	7823, 8.5	20. 92.	
I I-275 SB EXPRESS	AG -60	300.	252000.	3519. 3.5	20. 68.	
I I-275 SB LOCAL	AG -100	, -800,	-302000.	5555.10.2	20. 56.	
i I-275 NB EXPRESS	AG 140	2000.	601240.	7423. 8.8	20.132.	A 11L

I 1-275 MB EXPRESS AG 60. -1240. 60. 1000. 6401. 8.8 20. 93. 1.000.4 1000. 0.Y 10 1 36

CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.0, JANUARY 1992

JOB: I275/MLK BLVD 2010 BUILD DATE: 10/04/94 TIME: 13:36

RUN: 2010 BUILD

SITE & METEOROLOGICAL VARIABLES *******************

1

PAGE 1

LINK VARIABLES -----

LINK DESCRIPTION	*	Ł	INK COORDII	NATES (FT)	*	LENGTH	BRG TYPE	KAA	EF	H W V/C	QUEUE
					Y2 *		(DEG)		(G/MI)	(FT) (FT)	(KEH)
1. MLK WB APP	*	1000.0		0.0	25.0 *		270. AG	3162.	35.0	0.0 36.0	
2. MLK WB DELAY	*	150.0	25.0	1121.8	25.0 *	972.	90. AG	1397.	100.0	0.0 48.0 1.10	49.4
3. MLK WB LEFT	*	150.0	0.0	306.5	0.0 *	156.	90. AG	823.	100.0	0.0 24.0 0.79	8.0
4. MLK WB DEPART	*	0.0	25.0	-1000.0	30.0 *	1000.	270. AG	3167.	35.0	0.0 36.0	
5. MLK E8 APP	*	-1000.0	-36.0	0.0	-40.0 *	1000.	90. AG	2809.	35.0	0.0 36.0	
6. MLK EB DELAY	*	-150.0	-36.0	-471.8	-36.0 *	322.	270. AG	1397.	100.0	0.0 48.0 0.98	16.3
7. MLK EB LEFT	*	-150.0	0.0	-280.3	0.0 *	130.	270. AG	823.	100.0	0.0 24.0 0.69	6.6
8. MLK EB DEPART	*	0.0	-40.0	1000.0	-40.0 *	1000.	90. AG	2822.	35.0	0.0 24.0	
9. SB RAMP APP	*	-145.0	1000.0	-150.0	0.0 *	1000.	180. AG	1388.	17.7	0.0 44.0	
10. SB RAMP DELAY	*	-150.0	45.0	-149.1	224.3 *	179.	O. AG	823.	100.0	0.0 24.0 0.85	9.1
11. SB RAMP LEFT	*	-120.0	45.0	-132.7	258.3 *	214.	357. AG	832.	100.0	0.0 24.0 0.92	10.9
12. SB RAMP DEPART	*	-150.0	0.0	-145.0	-1000.0 *	1000.	180, AG	1288.	17.7	0.0 44.0	
13. NB RAMP APP	*	145.0	-1000.0	145.0	0.0 *	1000.	360. AG	1054.	17.7	0.0 44.0	
14. NB RAMP DELAY	*	140.0	-60.0	140.6	-180.9 *	121.	180. AG	823.	100.0	0.0 24.0 0.64	6.1
15. NB RAMP LEFT	*	110.0	-60.0	120.4	-187.5 *	128.	175. AG	832.	100.0	0.0 24.0 0.70	6.5
16. NB RAMP DEPART	*	145.0	0.0	145.0	1000.0 *	1000.	360. AG	1136.	17.7	0.0 44.0	
17. I-275 SB EXPRESS	*	-60.0	1000.0	-60.0	-800.0 *	1800.	180. AG	7823.	8.5	20.0 92.0	
18. I-275 S8 EXPRESS	*	-60.0	-800.0	25.0	-2000.0 *	1203.	176. AG	3518.	8.5	20.0 68.0	
19. I-275 SB LOCAL	*	-100.0	-800.0	-30.0	-2000.0 *	1202.	177. AG	5555.	10.2	20.0 56.0	
20. I-275 NB EXPRESS	*	140.0	-2000.0	60.0	-1240.0 *	764.	354. AG	7423.	8.8	20.0 ****	
21. I-275 NB EXPRESS	*	60.0	-1240.0	60.0	1000.0 *	2240.	360. AG	6401.	8.8	20.0 92.0	

PAGE 2

JOB: 1275/MLK BLVD 2010 BUILD

1

DATE: 10/04/94 TIME: 13:36

RUN: 2010 BUILD

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SIGNAL TYPE	ARRIVAL RATE
2. MLK WB DELAY	*	120	73	2.0	2533	1600	214.00	1	3
3. MLK WB LEFT	*	120	86	2.0	629	1600	214.00	1	3
6. MLK EB DELAY	*	120	73	2.0	2255	1600	214.00	1	3
7. MLK EB LEFT	*	120	86	2.0	554	1600	214.00	1	3
10. SB RAMP DELAY	*	120	86	2.0	677	1600	214.00	1	3
II. SB RAMP LEFT	*	120	87	2.0	711	1600	214.00	1	3
14. NB RAMP DELAY	*	120	86	2.0	515	1600	214.00	1	3
15. NB RAMP LEFT	*	120	87	2.0	539	1600	214.00	1	3

RECEPTOR LOCATIONS

	RECE	PTOR	;	ŧ	X		Y	Z	!	*
				K						*
1.	RECP	1	2	ŧ	185.	0	495.)	6.0	*
2.	RECP	2	1	ŧ	320.	0	170.)	6.0	*
3.	RECP	3	*	k	680.	0	-95.)	6.0	*
4.	RECP	4	*	ţ	200.	0	-525.)	6.0	*
5.	RECP	5	1	ţ	-200,	0	~530.)	6.0	*
6.	RECP	6 '	*	t .	-235.	0	-105.0)	6.0	*
7.	RECP	7	1	t	-350.0)	130.0)	6.0	*
8.	RECP	8	1	\$	-650.0)	-70.0)	6.0	*
9.	RECP	9	*		-640.0)	70.0)	6.0	*
10.	RECP	10	1	(290.0)	-110.0)	6.0	*

JOB: 1275/MLK BLVD 2010 BUILD RUN: 2010 BUILD

MODEL RESULTS

1

REMARKS: In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 10.-360.

WIND * CONCENTRATION ANGLE * (PPM) (DEGR)* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 10. * 0.1 0.0 4.8 2.1 3.8 8.5 0.3 4.0 0.0 4.7 20. 0.0 0.0 4.6 3.8 9.6 4.1 1.5 0.7 0.0 4.3 30. * 0.0 0.0 4.8 1.5 3.9 9.3 1.2 4.6 0.4 4.4 40. * 0.0 0.0 5.1 1.6 3.9 8.4 1.3 5.2 4.7 0.6 50. 0.0 0.0 5.3 1.4 3.8 7.4 1.3 5.8 0.7 5.0 60, 0.0 0.0 5.3 0.8 3.3 6.5 1.6 6.7 0.8 5.2 70. * 0.0 4.4 0.2 2.5 7.1 2.0 8.4 0.0 1.1 5.1 80. * 1.9 0.0 0.1 2.6 0.0 6.9 2.7 2.8 3.9 9.3 90. 0.0 0.7 1.0 0.0 1.7 4.8 4.4 7.5 5.8 1.7 100. * 0.0 2.2 0.2 0.0 1.7 2.8 5.8 3.5 8.3 0.3 110. * 0.3 3.6 0.0 0.0 1.7 1.9 5.9 1.1 7.9 0.0 120, * 1.0 4.1 0.0 0.0 1.9 1.6 5.5 0.7 6.7 0.0 130. 1.5 3.9 1.9 1.7 5.7 0.0 0.0 5.6 0.7 0.0 140. * 1.6 3.7 0.0 0.0 2.2 1.8 5.8 0.8 5.0 0.0 150. * 1.6 3.5 0.0 0.0 2.2 1.8 5.5 0.7 4.8 0.0 160. 1.7 3.3 0.0 0.0 2.5 2.2 5.2 0.4 4.3 0.0 170. * 2.1 3.5 0.0 0.2 2.1 1.8 4.8 0.1 3.8 0.0 180, * 3.2 4.0 0.0 0.9 1.0 0.8 4.0 0.0 3.7 0.5 190. 3.9 4.9 0.1 1.7 0.2 0.2 3.7 0.0 3.7 1.0 200. 3.8 5.8 0.5 2.1 0.0 0.0 3.6 0.0 3.8 1.5 210. * 4.2 6.0 0.6 2.0 0.0 0.0 3.4 0.0 4.0 1.5 220. 4.0 5.6 0.8 1.9 0.0 0.0 3.1 0.0 4.0 1.5 0.0 230. * 4.2 4.9 0.8 1.9 2.8 0.0 0.0 4.4 1.5 3.2 240. * 4.4 0.8 1.7 0.0 0.0 2.8 0.0 4.6 1.8 250. * 2.4 4.6 0.9 1.6 0.0 0.0 2.6 0.2 4.4 2.1 260. * 2.0 3.9 2.0 1.6 0.0 0.5 1.7 0.7 3.2 3.1 2.6 270. 1.8 4.5 1.9 2.1 5.1 1.6 0.0 0.6 1.8 280. * 1.9 1.5 6.8 1.7 0.0 4.3 0.1 3.8 0.5 6.6 6.0 290. * 1.9 1.2 7.2 2.0 0.0 5.0 0.1 6.5 0.1 300. * 2.0 1.2 6.8 2.6 0.4 6.4 0.0 5.0 0.0

A-17

PAGE 3

310.	*	2.1	1.2	6.2	3.3	0.8	6.3	0.0	4.9	0.0	6.0
320.	*	2.1	1.2	5.8	3.7	1.1	6.0	0.0	4.5	0.0	6.2
330.	*	2.1	1.2	5.2	3.7	1.3	6.0	0.0	4.2	0.0	6.6
340.	*	1.6	0.8	4.6	3.6	1.5	6.1	0.0	4.1	0.0	6.3
350.	*	1.1	0.3	4.8	3.6	2.1	6.4	0.0	4.0	0.0	5.6
360.	¥	0.5	0.0	4.8	2.6	2.9	7.2	0.0	4.1	0.0	5.1
	- * -										
MAX	*	4.2	6.0	7.2	3.7	3.9	9.6	5.9	9.3	8.3	6.6
DEGR.	¥	210	210	290	320	40	20	110	80	100	330

THE HIGHEST CONCENTRATION IS 9.60 PPM AT 20 DEGREES FROM REC6.

```
0I/M program selected:
     Start year (January 1):
                                      1991
     Pre-1981 MYR stringency rate:
                                       20%
     First model year covered:
                                      1975
     Last model year covered:
                                      2020
     Waiver rate (pre-1981);
                                      10.%
     Waiver rate (1981 and newer):
                                      10.%
     Compliance Rate:
                                      98.%
     Inspection type:
                                      Test Only
     Inspection frequency
                                      Annual
     Vehicle types covered:
                                      LOGV - Yes
                                     LOGT1 - Yes
                                     LDGT2 - Yes
                                      HDGV - No
     1981 & later MYR test type:
                                      Idle
    Cutpoints, HC: 220.000 CO: 1.200 NOx: 999.000
Ofunctional Check Program Description:
OCheck Start Model Yrs Vehicle Classes Covered
                                                     Inspection
                                                                      Comp
      (Janl) Covered
                        LDGV LDGT1 LDGT2 HDGV
                                                   Type
                                                             Freq
                                                                      Rate
 ATP 1991
              1975-2020 Yes
                               Yes
                                     Yes
                                            No Test Only
                                                             Annual
                                                                      98.0%
OAir pump system disablements:
                                  No Catalyst removals:
 Fuel inlet restrictor disablements: No Tailpipe lead deposit test:
                                                                         No
                                  No Evaporative system disablements:
 EGR disablement:
                                                                         No
 PCV system disablements:
                                  No Missing gas caps:
                                                                         Yes
OTAMPA
             FL
                   Minimum Temp: 50. (F) Maximum Temp: 70. (F)
                   Period 1 RVP: 10.5
                                          Period 2 RVP: 9.0 Period 2 Yr: 1992
ONon-methane HC emission factors include evaporative HC emission factors.
OEmission factors are as of Jan. 1st of the indicated calendar year.
OCal. Year: 2010
                         Region: Low
                                             Altitude: 500. Ft.
                                          Ambient Temp: 52.0 / 52.0 / 52.0 F
                    I/M Program: Yes
              Anti-tam. Program: Yes
                                        Operating Mode:
                                                         0.0 / 0.0 / 0.0
               Reformulated Gas: No
OVeh. Type: LDGV LDGT1 LDGT2 LDGT
                                      HDGV
                                            LDDV
                                                   LODT
                                                         HDDV
                                                                MC
                                                                     All Veh
Veh. Spd.: 2.5
                  2.5
                         2.5
                                      2.5
                                            2.5
                                                   2.5
                                                          2.5
  VMT Mix: 0.590 0.201 0.088
                                      0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)
No-Mth HC: 7.16 8.57 12.25 9.69 13.23
                                            0.94
                                                  1.27 4.41 8.63 7.84
Exhst CO: 83.28 92.76 129.82 104.05 89.04
                                            3.49 3.80 35.72 140.31 85.60
                                           1.87 1.93 12.11 0.91 2.87
Exhst NOX: 1.85 2.11 3.07 2.41 3.51
DEmission factors are as of Jan. 1st of the indicated calendar year.
OCal. Year: 2010
                         Region: Low
                                             Altitude: 500. Ft.
                    I/M Program: Yes
                                          Ambient Temp: 52.0 / 52.0 / 52.0 F
              Anti-tam. Program: Yes
                                        Operating Mode:
                                                        20.6 / 27.3 / 20.6
               Reformulated Gas: No
OVeh. Type: LDGV LDGT1 LDGT2 LDGT
                                     HDGV
                                            LDDV
                                                  LDDT
                                                         HODV
                                                                MC
                                                                   All Veh
Veh. Spd.: 5.0
                  5.0 5.0
                                      5.0
                                            5.0
                                                   5.0
                                                         5.0
                                                                5.0
  VMT Mix: 0.590 0.201 0.088
                                      0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)
No-Mth HC: 4.65 5.71 7.92 6.38 8.74
                                            0.91 1.25 3.87 7.74 5.22
Exhst CO: 54.05 62.49 83.56 68.91 71.14
                                            3.69 4.11 29.16 106.41 56.94
Exhst NOX: 1.74 1.99 2.85 2.25 3.61
                                            1.67 1.90 10.89
                                                              0.95 2.67
```

ITIS EIS EMISSION FACTORS MOBILE5a (26-Mar-93)

O£mission fac										
OCal. Year: 20	010							500. Ft.		
		,	-							52.0 F
	Anti	-tam.	Progra	m: Yes	0per	ating h	node:	20.6 /	27.3 /	20.6
			ated Ga							
OVeh. Type: \	.DGV LI	DGTI	LDGT2	LDGT	HDGV	LDDV	LODT	HODV	MC	All Veh
+			****							
Veh. Spd.: 6	5.0	6.0	6.0		6.0	6.0	6.0	6.0	6.0	
VMT Mix: (0.5 9 0 +	0.201	0.088		0.032	0.002	0.003	0.079	0.005)
OComposite Emi	ission	Facto	rs (Gm/	Mile)						
•		4.86	6.73	5.43	7.86	0.87	1.19	3.68	6.75	4.49
Exhst CO: 46					65.29				88.79	
Exhst NOX:					3.64	1.61		10.46	0.92	2.57
EXHIBO HOX.	,	1./1			0.07		1.01		V 1 / 2	_,,,,
OEmission fact	tors are		of lan	1st of	the inc	icated	calend	ar vear	***	
OCal. Year: 20								500. Ft.		
VC41. 1841. 20	710		_							
					An					
			-		Oper	ating r	1008:	20.6 /	21.3 /	20.6
			ated Ga							
OVeh. Type: L	DGV L	DGT1	LDGT2	LDGI	HDGV	LDDV	LDDT	HDDV	MC	All Veh
+										
Veh. Spd.: 7					7.0	7.0				
VMT Mix: 0					0.032	0.002	0.003	0.079	0.005	1
OComposite Emi	ission (Facto	rs (Gm/	Mile)						
No-Mth HC: 3	3.50	4.28	5.91	4.78	7.15	0.83	1.14	3.51	6.00	3.98
Exhst CO: 41	.87 48	8.81	65.13	53.78	60.04	3.17	3.52	24.99	75.53	44.54
Exhst NOX: 1	.62	1.85	2.66	2.10	3,68	1.55	1.75	10.06	0.90	2.49
OEmission fact	ors are	e as (of Jan.	ist of	the ind	icated	calenda	ar vear.		
								-		
-00ai. Year: 20	110		Regin	กะโกษ		Altıt	inde: '	500. Et.		
OCal. Year: 20	10	I/M			Δm			500. Ft. -52 0 /		52 0 F
OCai. Year: 20		I/M	Progra	n: Yes	Am	bient T	emp:	52.0 /	52.0 /	
OCai. Year: 20	Anti-	I/M -tam.	Progra Progra	m: Yes m: Yes	Am	bient T	emp:		52.0 /	
	Anti- Refo	I/M -tam. ormula	Progra Progra ated Ga	m: Yes m: Yes s: No	Am Oper	bient Tating M	Temp: tode:	52.0 / 20.6 /	52.0 / 27.3 /	20.6
OYeh. Type: L	Anti- Refo	I/M -tam. ormula	Progra Progra ated Ga	m: Yes m: Yes s: No	Am Oper	bient T	emp:	52.0 /	52.0 / 27.3 /	
0Yeh. Type: L	Anti- Refo DGV LO	I/M -tam. ormula DGT1	Progra Progra ated Ga LDGT2	m: Yes m: Yes s: No	Am Oper HDGV	bient Tating M	Temp: tode: LDDT	52.0 / 20.6 / HDDV	52.0 / 27.3 / MC	20.6
OVeh. Type: L + Veh. Spd.: 8	Anti- Refo DGV LE	I/M -tam. ormula OGT1 	Progra Progra ated Ga LDGT2 -8.0	m: Yes m: Yes s: No LOGT	Am Oper HDGV	bient Tating M	femp: tode: LDDT 8.0	52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC 	20.6 All Veh
OVeh. Type: L + Veh. Spd.: 8 VMT Mix: 0	Anti- Refo DGV LE 	I/M -tam. ormula OGT1 B.O 0.201	Progra Progra ated Ga LDGT2 8.0 0.088	m: Yes m: Yes s: No LDGT	Am Oper HDGV 8.0 0.032	bient Tating M	femp: tode: LDDT 8.0	52.0 / 20.6 / HDDV	52.0 / 27.3 / MC 	20.6 All Veh
OVeh. Type: L + Veh. Spd.: 8 VMT Mix: 0 OComposite Emi	Anti- Refo DGV LE 3.0 8 0.590 (I/M-tam. ormula DGT1 B.0 0.201 Factor	Progra Progra ated Ga LDGT2 8.0 0.088	m: Yes m: Yes s: No LDGT	Am Oper HDGV 8.0 0.032	EDDV 8.0 0.002	Temp: dode: LDDT	52.0 / 20.6 / HDDV 8.0 0.079	52.0 / 27.3 / MC 	20.6 All Veh
OVeh. Type: L + Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3	Anti- Refo DGV LO 3.0 8 0.590 (ssion 8	I/M-tam. ormula DGT1 B.0 0.201 Factor 3.88	Progra Progra ated Ga LDGT2 8.0 0.088 rs (Gm/i 5.35	m: Yes m: Yes s: No LDGT Mile) 4.33	Am Oper HDGV -8.0 0.032 6.60	bient Tating M LDDV 8.0 0.002	Temp: Hode: LDDT 8.0 0.003	52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC 	20.6 All Veh
OVeh. Type: L t Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38	Anti- Refo DGV LE 3.0 8 0.590 (ssion F 3.18 3	I/M -tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53	Progra Progra ated Ga LDGT2 8.0 0.088 rs (Gm/ 5.35 59.37	m: Yes m: Yes s: No LDGT 4.33 49.05	Am Oper HDGV 8.0 0.032 6.60 55.34	LDDV 8.0 0.002 0.79 2.94	Temp: tode: LDDT 8.0 0.003 1.08 3.27	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58
OVeh. Type: L + Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3	Anti- Refo DGV LE 3.0 8 3.590 (ssion F 3.18 3	I/M -tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53	Progra Progra ated Ga LDGT2 8.0 0.088 rs (Gm/ 5.35 59.37	m: Yes m: Yes s: No LDGT 4.33 49.05	Am Oper HDGV 8.0 0.032 6.60 55.34	LDDV 8.0 0.002 0.79 2.94	Temp: tode: LDDT 8.0 0.003 1.08 3.27	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58
OVeh. Type: L t Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1	Anti- Refo DGV LL 3.0 8 0.590 (ssion f 3.18 3 8.07 44	I/M -tam. ormula DGT1 	Progra Progra ated Ga LDGT2 	m: Yes m: Yes s: No LDGT Mile) 4.33 49.05 2.05	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72	LDDV 8.0 0.002 0.79 2.94 1.49	Temp: hode: LDDT 8.0 0.003 1.08 3.27 1.69	52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L t Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1	Anti- Refo DGV LE 3.0 8 0.590 (ssion F 3.18 3 3.07 44 .59 1	I/M -tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81	Progra Progra ated Ga LDGT2 8.0 0.088 rs (Gm/i 5.35 59.37 2.59	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05	Am Oper HDGV 	8.0 0.002 0.79 2.94 1.49	Emp: tode: LDDT 	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L t Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1	Anti- Refo DGV LE 3.0 8 3.590 (ssion 8 3.18 3 4.07 44 .59 1	I/M -tam. ormula OGT1 	Progra Progra ated Ga LDGT2 8.0 0.088 rs (Gm/ 5.35 59.37 2.59 of Jan. Regio	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind	LDDV 8.0 0.002 0.79 2.94 1.49 Sicated Altit	Emp: Mode: LDDT 8.0 0.003 1.08 3.27 1.69	52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC 8.0 0.005 5.41 65.35 0.88	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L t Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1	Anti- Refo DGV LE 3.0 8 0.590 (ssion f 3.18 3 4.07 44 .59 1	I/M -tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81 e as (Progra Progra ated Ga LDGT2 8.0 0.088 rs (Gm// 5.35 59.37 2.59 of Jan. Regio Progra	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Lst of n: Low n: Yes	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind	LDDV 8.0 0.002 0.79 2.94 1.49 Hicated Altitheient T	Emp: LDDT 8.0 0.003 1.08 3.27 1.69 calendarude: 5	52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L t Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1	Anti- Refo DGV LE 3.0 8 0.590 (ssion f 3.18 3 4.07 44 .59 1	I/M -tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81 e as (Progra Progra ated Ga LDGT2 8.0 0.088 rs (Gm// 5.35 59.37 2.59 of Jan. Regio Progra	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Lst of n: Low n: Yes	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind	LDDV 8.0 0.002 0.79 2.94 1.49 Hicated Altitheient T	Emp: LDDT 8.0 0.003 1.08 3.27 1.69 calendarude: 5	52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L t Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1	Anti- Refo DGV LE 3.0 & 3.590 (ssion f 3.18 3 8.07 44 .59 1	I/M-tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81 e as c I/M-tam.	Programated Ga LDGT2 8.0 0.088 rs (Gm/r) 5.35 59.37 2.59 of Jan. Regio Programa	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Lst of n: Low n: Yes	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind	LDDV 8.0 0.002 0.79 2.94 1.49 Hicated Altitheient T	Emp: LDDT 8.0 0.003 1.08 3.27 1.69 calendarude: 5	52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20	Anti- Refo DGV LE 8.0 & 9.590 (ssion F 1.18 3 8.07 44 .59 1 ors are	I/M-tam ormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81 e as c I/M-tam ormula	Programated Ga LDGT2 8.0 0.088 rs (Gm/l) 5.35 59.37 2.59 of Jan. Regio Programated Gamated G	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes n: Yes s: No	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind	Book to the street of the stre	Emp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda dude: 5	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. Ft. 52.0 / 20.6 /	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L	Anti- Refc DGV LE 3.0 8 3.590 (ssion F 3.18 3 3.07 44 5.59 1 Cors are 10 Anti- Refc DGV LE	I/M-tam. cormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81	Programated GallogT2 8.0 0.088 rs (Gm/i 5.35 59.37 2.59 of Jan. Regio Programated GallogT2	m: Yes m: Yes s: No LDGT LDGT 4.33 49.05 2.05 LSt of n: Low n: Yes s: No LDGT	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind Oper	LDDV 8.0 0.002 0.79 2.94 1.49 Sicated Altitheight Tating M	Temp: LDDT 8.0 0.003 1.08 3.27 1.69 calenda cude: Semp: dode: LDDT	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. Ft. 52.0 / 20.6 /	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L	Anti- Refc DGV LE 3.0 8 3.590 (ssion F 3.18 3 3.07 44 5.59 1 Cors are 10 Anti- Refc DGV LE	I/M-tam. cormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81	Programated GallogT2 8.0 0.088 rs (Gm/i 5.35 59.37 2.59 of Jan. Regio Programated GallogT2	m: Yes m: Yes s: No LDGT LDGT 4.33 49.05 2.05 LSt of n: Low n: Yes s: No LDGT	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind Oper	LDDV 8.0 0.002 0.79 2.94 1.49 Sicated Altitheight Tating M	Temp: LDDT 8.0 0.003 1.08 3.27 1.69 calenda cude: Semp: dode: LDDT	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. Ft. 52.0 / 20.6 /	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10	Anti- Refc DGV LE 3.0 8 3.590 (ssion 6 3.18 3 4.59 1 5.00 anti- Refc DGV LE	I/M tam. cormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81 e as (I/M tam. cormula DGT1	Programated GallogT2 8.0 0.088 rs (Gm/include 5.35 fg.37 fg.59 of Jan. Regio Programated GallogT2 10.0	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes s: No LDGT	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV	Bient Tating M LDDV 8.0 0.002 0.79 2.94 1.49 Bicated Altitibient Tating M LDDV	Emp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda: ude: 5 femp: hode: LDDT 10.0	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. Ft. 52.0 / 20.6 / HDDV	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0	Anti- Refc DGV LE 3.0 8 3.590 (ssion F 3.18 3 3.07 44 5.59 1 Cors are 10 Anti- Refc DGV LE	I/M-tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81 e as of I/M-tam. ormula DGT1 0.0 0.201	Programated GallogT2 8.0 0.088 rs (Gm/instance Signal Sig	m: Yes m: Yes s: No LDGT LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes n: Yes s: No LDGT	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV	Bient Tating M LDDV 8.0 0.002 0.79 2.94 1.49 Bicated Altitibient Tating M LDDV	Emp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda: ude: 5 femp: hode: LDDT 10.0	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. Ft. 52.0 / 20.6 / HDDV	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi	Anti- Refc DGV LC 3.0 8 3.590 (ssion F 3.18 3 3.07 44 5.59 1 00rs are 10 Anti- Refc DGV LC 5.590 (ssion F	I/M -tam. cormula 0GT1 B.O 0.201 Factor 3.88 4.53 1.81 E as 6 I/M -tam. cormula 0GT1 0.0 0.201 Factor	Programated GallogT2 8.0 0.088 rs (Gm/l) 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm/l) 0.088 rs (Gm/l)	m: Yes m: Yes s: No LDGT LDGT 4.33 49.05 2.05 LSt of n: Low n: Yes s: No LDGT	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV -10.0 0.032	Book to the street to the stre	Emp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda ide: LDDT 10.0 0.003	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi No-Mth HC: 2	Anti- Refc DGV LC 3.0 8 3.590 (ssion F 3.18 3 3.07 44 3.59 1 00rs are 100 Anti- Refc DGV LC 0.590 (ssion F 3.74 3	I/M-tam. ormula DGT1 B.O 0.201 Factor 3.88 4.53 1.81 E as 0 I/M-tam. ormula DGT1 0.0 0.201 Factor 3.32	Programated GallogT2 8.0 0.088 rs (Gm/li 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm/li 4.57	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes s: No LDGT 4.33 49.05 2.05	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV -10.0 0.032	Book to the street that the st	Temp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda ide: LDDT 10.0 0.003 0.99	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 52.0 / 20.6 / HDDV 	52.0 / 27.3 / MC 8.0 0.005 5.41 65.35 0.88 52.0 / 27.3 / MC 10.0 0.005 4.57	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi No-Mth HC: 2 Exhst CO: 32	Anti- Refc DGV LC 3.0 8 3.0 8 3.18 3 3.18 3 3.07 44 3.59 1 0.07 are 0.0 10 Anti- Refc DGV LC 3.590 0 5.590 0 5.590 0 5.590 6 5.74 3	I/M - tam	Programated GallogT2 8.0 0.088 rs (Gm/l) 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm/l) 4.57 51.31	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Yes n: Yes s: No LDGT 411e) 3.70 42.43	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV -10.0 0.032 5.67 47.33	8.0 0.002 0.79 2.94 1.49 licated Altit bient Tating M LDDV 10.0 0.002	Emp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calendative: tode: LDDT 10.0 0.003 0.99 2.83	52.0 / 20.6 / HDDV	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh 3.14 34.95
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi No-Mth HC: 2	Anti- Refc DGV LC 3.0 8 3.0 8 3.18 3 3.18 3 3.07 44 3.59 1 0.07 are 0.0 10 Anti- Refc DGV LC 3.590 0 5.590 0 5.590 0 5.590 6 5.74 3	I/M - tam	Programated GallogT2 8.0 0.088 rs (Gm/l) 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm/l) 4.57 51.31	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Yes n: Yes s: No LDGT 411e) 3.70 42.43	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV -10.0 0.032 5.67 47.33	8.0 0.002 0.79 2.94 1.49 licated Altit bient Tating M LDDV 10.0 0.002	Emp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calendative: tode: LDDT 10.0 0.003 0.99 2.83	52.0 / 20.6 / HDDV	52.0 / 27.3 / MC	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh 3.14 34.95
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi No-Mth HC: 2 Exhst CO: 32 Exhst NOX: 1	Anti- Refo .590 (.590	I/M-tam. ormula OGT1 B.O 0.201 Factor 3.88 4.53 1.81 e as of Tam. ormula OGT1 0.201 Factor 3.32 3.54 1.75	Programated GallogT2 8.0 0.088 rs (Gm// 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm// 4.57 51.31 2.51	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes s: No LDGT 4.33 1.98	Am Oper HDGV 8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV 70.0 0.032 5.67 47.33 3.79	8.0 0.002 0.79 2.94 1.49 LDDV 10.0 0.002 0.72 2.55 1.39	Emp: hode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda: tude: LDDT 10.0 0.003 0.99 2.83 1.57	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. ft. 52.0 / 20.6 / HDDV 10.0 0.079 3.04 20.11 9.03	52.0 / 27.3 / MC 8.0 0.005 5.41 65.35 0.88 52.0 / 27.3 / MC 10.0 0.005 4.57 51.12 0.86	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh 3.14 34.95
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi No-Mth HC: 2 Exhst CO: 32 Exhst NOX: 1 OEmission fact	Anti- Refc DGV LC 3.0 8 3.590 (ssion 8 3.18 3 3.07 44 3.59 1 00 Anti- Refc DGV LC 0 10 3.590 (ssion 8 3.74 38 3.74 38 3.74 38 3.74 38 3.74 38 3.74 38	I/M - tam. ormula 0GT1	Programated GallogT2 8.0 0.088 rs (Gm/li 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm/li 4.57 51.31 2.51	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes s: No LDGT 42.43 1.98 Ist of	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV -10.0 0.032 5.67 47.33 3.79 the ind	Bient Tating M LDDV 8.0 0.002 0.79 2.94 1.49 Bicated Altitation M LDDV 10.0 0.002 0.72 2.55 1.39 icated	Temp: tode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda tide: LDDT 10.0 0.003 0.99 2.83 1.57 calenda	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 52.0 / 20.6 / HDDV 10.0 0.079 3.04 20.11 9.03	52.0 / 27.3 / MC 8.0 0.005 5.41 65.35 0.88 52.0 / 27.3 / MC 10.0 0.005 4.57 51.12 0.86	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh 3.14 34.95
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi No-Mth HC: 2 Exhst CO: 32 Exhst NOX: 1	Anti- Refc DGV LC 3.0 8 3.590 (ssion F 3.18 3 3.07 44 3.59 1 00 Anti- Refc DGV LC 0.590 (ssion F 3.74 38 3.74 38 3.74 38 3.74 38 3.74 38	I/M -tam. cormula 0GT1	Programated GallogT2 8.0 0.088 rs (Gm/li 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm/li 4.57 51.31 2.51 of Jan. Region Region	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes s: No LDGT 42.43 1.98 Ist of	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV 	Bient Tating M LDDV 8.0 0.002 0.79 2.94 1.49 Bicated Altithient Tating M LDDV 10.0 0.002 0.72 2.55 1.39 icated Altithient Altithient Tating M	Temp: tode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda tide: LDDT 10.0 0.003 0.99 2.83 1.57 calenda tide: 5	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. ft. 52.0 / 20.6 / HDDV	52.0 / 27.3 / MC 8.0 0.005 5.41 65.35 0.88 52.0 / 27.3 / MC 10.0 0.005 4.57 51.12 0.86	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh 3.14 34.95 2.33
OVeh. Type: L Veh. Spd.: 8 VMT Mix: 0 OComposite Emi No-Mth HC: 3 Exhst CO: 38 Exhst NOX: 1 OEmission fact OCal. Year: 20 OVeh. Type: L Veh. Spd.: 10 VMT Mix: 0 OComposite Emi No-Mth HC: 2 Exhst CO: 32 Exhst NOX: 1 OEmission fact	Anti- Refc DGV LC 3.0 8 3.590 (ssion F 3.18 3 3.07 44 3.59 1 00 Anti- Refc DGV LC 0.590 (ssion F 3.74 38 3.74 38 3.74 38 3.74 38 3.74 38	I/M -tam. cormula 0GT1	Programated GallogT2 8.0 0.088 rs (Gm/li 5.35 59.37 2.59 of Jan. Regio Programated GallogT2 10.0 0.088 rs (Gm/li 4.57 51.31 2.51 of Jan. Region Region	m: Yes m: Yes s: No LDGT 4.33 49.05 2.05 Ist of n: Low n: Yes s: No LDGT 42.43 1.98 Ist of	Am Oper HDGV -8.0 0.032 6.60 55.34 3.72 the ind Am Oper HDGV -10.0 0.032 5.67 47.33 3.79 the ind	Bient Tating M LDDV 8.0 0.002 0.79 2.94 1.49 Bicated Altithient Tating M LDDV 10.0 0.002 0.72 2.55 1.39 icated Altithient Altithient Tating M	Temp: tode: LDDT 8.0 0.003 1.08 3.27 1.69 calenda tide: LDDT 10.0 0.003 0.99 2.83 1.57 calenda tide: 5	52.0 / 20.6 / HDDV 8.0 0.079 3.34 23.20 9.69 ar year. 500. ft. 52.0 / 20.6 / HDDV	52.0 / 27.3 / MC 8.0 0.005 5.41 65.35 0.88 52.0 / 27.3 / MC 10.0 0.005 4.57 51.12 0.86	20.6 All Veh 3.63 40.58 2.43 52.0 F 20.6 All Veh 3.14 34.95 2.33

					0pe	rating I	Mode:	20.6 /	27.3	/ 20.6	·
AU-5 #		Reformul						110.011			, .
OVeh. Type:		LDG11 				LUUV	LUUI	HDDV	MC	Ali V	/eh
Veh. Spd.:						12.0	12.0	12.0	12.0		
YMT Mix:											
OComposite	Emissi	on Facto	rs (Gm/	Mile)							
No-Mth HC:	2.45	2.95	4.05	3.28	4.93	0.66	0.90	2.78	4.01	2.7	19
Exhst CO:	29.18	34.55	45.94	38.02	40.84	2.22	2.47	17.55	41.92	31.1	12
Exhst NOX:	1.50	1.71	2.45	1.94	3.86	1.30	1.48	8.47	0.86	2.2	25
OEmission f	antors	200 20	of Isa	let of	the in	dicated			~~~~		
OCal. Year:								-			
					A					/ 52.0) F
					Ope:						
		Reformul									
OVeh. Type:						LDDV	LDDT	HDDV	MC	All V	/eh
+											
Veh. Spd.:	15.0	15.0	15.0		15.0	15.0	15.0	15.0	15.0		
VMT Mix:	0.590	0.201	0.088		0.032	0.002	0.003	0.079	0.009	5	
OComposite	Emissio	n Facto	rs (Gm/	Mile)							
No-Mth HC:											
Exhst CO:	25.63	30.56	40.57	33.61	33.27	1.84	2.04	14.51	33.20	27.2	2
Exhst NOX:	1.46	1.67	2.40	1.89	3.97	1.19	1.35	7.77	0.88	2.1	.7
OEmission f	actors	are as	of Jan.	1st of	the inc	licated	calenda	ar vear			
OCal. Year:								-			
		I/M	Progra	m: Yes	An	bient 1	emp:	52.0 /	52.0 /	52.0	F
					0per						
		Reformul	-					,			
OVeh. Type:						LODV	LDDT	HDDV	MC	All V	eh
+											
Veh. Spd.:											
VMT Mix:						0.002	0.003	0.079	0.005)	
OComposite						A E E	Λ 3 (0.74	7 7(2 7	c
No-Mth HC: Exhst CO:											
Exhst NOX:	1.40	1.00	2.30	1.00	4.01	1.10	1.32		0.89		
OEmission f								ar year.	•		
OCal. Year:	2010		Regio	n: Lo₩		Altit	ude: 5	500. Ft.	•		
		I/M	Progra	m: Yes	A	bient T	emp:	52.0 /	52.0 /	52.0	۶
					0per	ating M	iode:	20.6 /	27.3 /	20.6	
		eformul									
OVeh. Type:	LDGV	LDGTI	LDGT2	LDGT	HDGV	LDDV	LDDT	VDDK	MC	All V	eh
Veh. Spd.:	20.0	20.0	20.0		20.0	20.0	20.0	20.0	20.0		
VMT Mix:					0.032	0.002	0.003	0.079	0.005		
OComposite											
No-Mth HC:											
Exhst CO:	21.69	26.17	34,69	28.77	24.71	1.39	1.54	10.96	24.95	22.9	0
Exhst NOX:	1.44	1.63	2.33	1.84	4.15						
OEmission fa	actors	are as	of Jan	lst nf	the ind	icated	calenda	r vear.			
OCal. Year:					5110 2110			-			
	~-~*	T/M	Progra	m: Yes	Am	bient T	emp:	52.0 /	52.0 /	52.0	۶
	An	ti-tam.	Program	n: Yes	Oper	atino M	ode:	20.6 /	27.3 /	20.6	,
		eformul:			-601						
OVeh. Type:					HDGV	LDDV	LODT	ADDA	MC	All Ve	eh
+											

Veh. Spd.: 25.0 25.0 25.0 VMT Mix: 0.590 0.201 0.088	25.0 25.0 25.0 25.0 25.0 0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile) No-Mth HC: 1.52 1.84 2.49 2.04	2.44 0.40 0.54 1.68 2.68 1.71
Exhst CO: 16.55 20.44 27.16 22.49	19.39 1.10 1.22 8.66 19.90 17.67
Exhst NOX: 1.48 1.64 2.35 1.86	4.34 0.98 1.11 6.38 1.06 2.06
OEmission factors are as of Jan. 1st of	the indicated calendar year.
OCal. Year: 2010 Region: Low	Altitude: 500. Ft. Ambient Temp: 52.0 / 52.0 / 52.0 F
I/M Program: Yes	Ambient Temp: 52.0 / 52.0 / 52.0 F
	Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	HAND JOBU LOST NORD HA AND HAND
t	HDGV LDDV LDDT HDDV MC All Veh
Veh. Spd.: 29.0 29.0 29.0	
VMT Mix: 0.590 0.201 0.088	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
	2.10 0.35 0.48 1.48 2.49 1.52
	16.61 0.94 1.04 7.41 16.89 14.79
EXAST WAY: 1.50 1.65 2.36 1.86	4.48 0.94 1.07 6.14 1.13 2.06
OEmission factors are as of Jan. 1st of	
OCal. Year: 2010 Region: Low	Altitude: 500. Ft. Ambient Temp: 52.0 / 52.0 / 52.0 F
I/M Program: Yes	Ambient Temp: 52.0 / 52.0 / 52.0 F
	Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	HDGV LDDV LDDT HDDV MC All Veh
1	
Veh. Spd.: 30.0 30.0 30.0	30.0 30.0 30.0 30.0 30.0
VMT Mix: 0.590 0.201 0.088	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
No-Mth HC: 1.31 1.62 2.18 1.79	2.03 0.34 0.47 1.44 2.44 1.49
Exhst CO: 13.12 16.62 22.14 18.30	16.07 0.91 1.01 7.16 16.24 14.20
EXAST NUX: 1.50 1.65 2.36 1.86	4.52 0.94 1.06 6.10 1.15 2.07
OEmission factors are as of Jan. 1st of	
OCal. Year: 2010 Region: Low	Altitude: 500. Ft.
I/M Program: Yes	Ambient Temp: 52.0 / 52.0 / 52.0 F
	Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	
	HDGY LDDV LDDT HDDV MC All Veh
Veh. Spd.: 31.0 31.0 31.0	31.0 31.0 31.0 31.0 31.0
YHI HIX: V.J7V V.ZVI V.VOD	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
	1.97 0.33 0.45 1.40 2.40 1.45
Exhst CO: 12.57 16.00 21.33 17.63	15.58 0.88 0.98 6.93 15.63 13.64
Exhst NOX: 1.51 1.65 2.36 1.87	4.56 0.93 1.06 6.08 1.16 2.07
OEmission factors are as of Jan. 1st of	the indicated calendar year.
I/M Program: Yes	Altitude: 500. Ft. Ambient Temp: 52.0 / 52.0 / 52.0 F Operating Mode: 20.6 / 27.3 / 20.6
Anti-tam. Program: Yes	Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	
4	HDGV LDDV LDDT HDDV MC All Veh
Veh. Spd.: 32.0 32.0 32.0	32.0 32.0 32.0 32.0 32.0
Veh. Spd.: 32.0 32.0 32.0 VMT Mix: 0.590 0.201 0.088	32.0 32.0 32.0 32.0 32.0 32.0 0.032 0.002 0.003 0.079 0.005
Veh. Spd.: 32.0 32.0 32.0 VMT Mix: 0.590 0.201 0.088 OComposite Emission Factors (Gm/Mile)	32.0 32.0 32.0 32.0 32.0 0.032 0.002 0.003 0.079 0.005

Exhst CO: Exhst NOX:										
O£mission f										
OCal. Year:	2010		Regio	on: Low		Alti	tude:	500. Ft		
		1/1	i Progra	am: Yes	A	mbient	Temp:	52.0 /	52.0	52.0 F
	Ar	nti-tam.	Progra	am: Yes	0pe	rating	Mode:	20.6 /	27.3 /	20.6
A) 1 T				35: NO		1.001/	1007	410.014	и.	A33 H.S
OVeh. Type:	LDGV	LUGII	LUGIZ	LUGI	HDGY	FOUV	LUUI	YUUK	MC	All Veh
Veh. Spd.:	33.0	33 0	33.0		33.0	33.0	33.0	33.0	33.0	~ ~~~~~
VMT Mix:	0.590	0.201	0.088	}	0.032	0.002	0.003	0.079	0.005	5
OComposite	Emissio	n Facto	rs (Gm/	Mile)						
No-Mth HC:	1.22	1.52	2.04	1.68	1.86	0.31	0.43	1.33	2.33	1.38
Exhst CO:	11.57	14.88	19.86	16.40	14.75	0.83	0.92	6.53	14.51	12.63
Exhst NOX:	1.51	1.65	2.37	1.87	4.63	0.93	1.05	6.04	1.19	2.07
OEmission f	actors	are as	of Jan	ist of	the in	dicated	calend	ar vear	. 	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~~~	I/M	Progra	ım: Yes	A	mbient	Temp:	52.0 /	52.0 /	52.0 F
OCal. Year:	An	ti-tam.	Progra	m: Yes	Ope	rating i	Mode:	20.6 /	27.3 /	20.6
	A	eformul	ated Ga	s: No	•					
OVeh. Type:										All Veh
Veh. Spd.:	34.0	34.0	34.0	·	34.0	34.0	34.0	34.0	34.0	·
Veh. Spd.: VMT Mix:	0.590	0.201	0.088	1	0.032	0.002	0.003	0.079	0.005	,
OComposite	Emissio	n Facto	rs (Gm/	Mile)						
No-Mth HC:	1.19	1.49	2.00	1.64	1.81					
Exhst CO:	11.11	14.37	19.19	15.84	14.39	0.81	0.90	6.36	14.00	12.17
Exhst NOX:	1.52	1.65	2.37	1.87	4.67	0.93	1.05	6.04	1.21	2.08
OEmission f	actore	2rp 2c	of lan	ist of	the in	dirated	calend	ar voar		
OCal Year:	2010	016 05	u; vaii. Regin	יט טכג וח יח	CHC IN	ulcateu !itlα	tude:	an year Soo Et	•	
	1010	T/M	Progra	m: Yes	Α	mbient 1	lemo:	52.0 /	52.0 /	52.0 F
OCal. Year:	An	ti-tam.	Progra	m: Yes	Ope	rating N	lode:	20.6 /	27.3 /	20.6
	R	eformul	ated Ga	s: No	•	J		,		
OVeh. Type:	LDGV	LDGT1	LDGT2	LDGT	YDGV	LDDV	LODT	HDDV	MC	All Veh
Veh. Spd.:	35.0	35.0	35.0		35.0	35.0	35.0	35.0	35.0	
Veh. Spd.: VMT Mix:	0.590	0.201	0.088		0.032	0.002	0.003	0.079	0.005	
OComposite (Emissio	n Facto	rs (Gm/	Mile)						
No-Mth HC:	1.17	1.46	1.96	1.61	1.76	0.30	0.41	1.26	2.26	1.32
Exhst CO:	10.68	13.89	18.56	15.31	14.08	0.79	0.87	6.20	13.53	11.74
Exhst NOX:	1.52	1.65	2.37	1.87	4.70	0.93	1.05	6.05	1.22	2.08
OEmission fa	actors	are as	of Jan.	1st of	the in	dicated		ar vear.		
OCal. Year:										
		I/M	Progra	m: Yes	Ar	Altit nbient T	emp:	52.0 /	52.0 /	52.0 F
	An	ti-tam.	Progra	m: Yes	Ope	rating M	lode:	20.6 /	27.3 /	20.6
		eformul.				-				
OVeh. Type:	LDGV					LDDV	LDDT	HDDV	MC i	All Veh
			7 (^		36.0	36.0	36.0	36.0	36.0	
ven. Spd.:	36.0	36.0	35.U		00.0					
Veh. Spd.: VMT Mix:										
VMT Mix:	0.590	0.201	0.088							
VMT Mix: OComposite 8	0.590 missio	0.201 n Facto	0.088 rs (Gm/	Mile)	0.032	0.002	0.003	0.079	0.005	
VMT Mix:	0.590 Emissio 1.14	0.201 n Facto 1.43	0.088 rs (Gm/ 1.93	Mile) 1.58	0.032	0.002	0.003	0.079	0.005	1.30
VMT Mix: OComposite E No-Mth HC:	0.590 Emissio 1.14 10.27	0.201 n Facto 1.43 13.44	0.088 rs (Gm/ 1.93 17.96	Mile) 1.58 14.81	0.032 1.72 13.80	0.002 0.29 0.77	0.003 0.40 0.85	0.079 1.23 6.06	0.005 2.24 13.09	1.30 11.33

OCal. Year: 2010 Region: Low	Altitude: 500. Ft.
	Ambient Temp: 52.0 / 52.0 / 52.0 F
HHTLI-tam. Program: res Reformulated Gas: No	Operating Mode: 20.6 / 27.3 / 20.6
OVeh. Type: LDGV LDGT1 LDGT2 LDGT	HDGV LDDV LDDT HDDV MC All Veh
1	70 0 70 0 70 0 70 0 70 0
Veh. Spd.: 39.0 39.0 39.0 VMT Mix: 0.590 0.201 0.088	
OComposite Emission Factors (Gm/Mile)	0.032 0.002 0.003 0.07) 0.003
	1.61 0.27 0.37 1.15 2.16 1.22
	13.17 0.72 0.80 5.71 11.96 10.24
Exhst NOX: 1.53 1.66 2.37 1.87	4.85 0.95 1.07 6.16 1.26 2.10
OEmission factors are as of Jan. 1st o	the indicated calendar year.
T/M Ornaram: Vac	Attitude: 300. Ft.
Anti-tam, Program: Yes	Altitude: 500. Ft. Ambient Temp: 52.0 / 52.0 / 52.0 F Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	operating house. Lots Little Lots
	HDGV LDDV LDDT HDDV MC All Veh
Veh. Spd.: 40.0 40.0 40.0	40 0 40 0 40 0 40 0
VMT Mix: 0.590 0.201 0.088	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
	1.58 0.27 0.37 1.13 2.14 1.20
Exhst CO: 8.84 11.84 15.87 13.07	
	4.89 0.95 1.08 6.21 1.27 2.11
OEmission factors are as of Jan. 1st of	the indicated calendar year.
OCal. Year: 2010 Region: Low	Altitude: 500. Ft. Ambient Temp: 52.0 / 52.0 / 52.0 F
I/M Program: Yes	Ambient Temp: 52.0 / 52.0 / 52.0 F
	Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	HDGV LDDV LDDT HDDV MC All Veh
+	HDAY LDOY LODY MODY MC ATT YELL
Veh. Spd.: 42.0 42.0 42.0	42.0 42.0 42.0 42.0 42.0
VMT Mix: 0.590 0.201 0.088	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
	1.52 0.26 0.35 1.09 2.10 1.16
	12.83 0.69 0.77 5.47 11.10 9.32
Exhst NOX: 1.54 1.66 2.38 1.88	4.96 0.97 1.10 6.34 1.28 2.12
O£mission factors are as of Jan. 1st of	the indicated calendar year
OCal. Year: 2010 Region: Low	
I/M Program: Yes	Ambient Temp: 52.0 / 52.0 / 52.0 F
	Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	
OVeh. Type: LDGV LDGT1 LDGT2 LDGT	
Veh. Spd.: 44.0 44.0 44.0	44.0 44.0 44.0 44.0 44.0
VMT Mix: 0.590 0.201 0.088	
OComposite Emission Factors (Gm/Mile)	
	1.48 0.25 0.34 1.05 2.08 1.13
	12,74 0.68 0.76 5.36 10,65 8.78
	5.03 1.00 1.13 6.50 1.29 2.14
400 Feb 100 Vic 700 Vi	art by all my stay fall my stay had been stay at the last stay at the column at the column are so my
OEmission factors are as of Jan. 1st of	
OCal. Year: 2010 Region: Low	Altitude: 500. Ft.
	Ambient Temp: 52.0 / 52.0 / 52.0 F
Anti-tam. Program: res Reformulated Gas: No	Operating Mode: 20.6 / 27.3 / 20.6
veinimataeen agg: un	A-24

OVeh. Type:	LOGV	LDGT1	LDGT2	LDGT	HDGV	LDDV	LDDT	VOOR	MC	All Veh
Veh. Spd.:	45.0	45.0	45.0		45.0	45.0	45.0	45.0	45.0	
VMT Mix:					0.032	0.002	0.003	0.079	0.00	5
OComposite	Emissio	n Facto	rs (Gm/	Mile)						
No-Mth HC:	0.97	1,25	1.67	1.38	1.46	0.24	0.34	1.03	2.07	1.11
Exhst CO:	7.41	10.25	13.78	11.33	12.74	0.67	0.75	5.33	10.46	8.53
Exhst NOX:	1.55	1.66	2.38	1.88	5.07	1,01	1.15	6.60	1.30	2.15
OEmission f						dicated	calend	ar year		
OCal. Year:	2010		Regio	n: Low		Alti	tude:	500. Ft		
		I/M	Progra	m: Yes	Aı	mbient	Temp:	52.0 /	52.0	52.0 F
					0pe	rating H	tode:	20.6 /	27.3	20.6
				s: No						
OVeh. Type:	LDGV	LDGTI	LDGT2	LDGT	HDGV	LDDV	LODT	HDDV	MC	All Veh
Veh. Spd.:	46.0	46.0	46.0		46.0	46 0	46 0	46 0	46.0	
VMT Mix:										,
OComposite					0.001	V.00L	0.000	0.077	0,000	•
No-Mth HC:					1.44	0 24	0.33	1 02	2 06	1 09
Exhst CO:										
Exhst NOX:										
OEmission f										
OCal. Year:	2010		Regio	n: Low		Altit	ude: S	600. Ft.		
		I/M	Progra	m: Yes	An	mbient 1	emp:	52.0 /	52.0 /	52.0 F
					0pe r	ating M	lode:	20.6 /	27.3 /	20.6
		eformula								
OVeh. Type:	LDGV	LDGT1	LDGT2	LDGT	HDGV	LDDV	LDDT	ADDA	MC	All Veh
Veh. Spd.:	47.0	47.0	47.0		47.0	47.0	47.0	47.0	47.0	
VMT Mix:	0.590	0.201	0.088		0.032	0.002	0.003	0.079	0.005	
OComposite {										
No-Mth HC:	0.94	1.22	1.62	1.34	1.42	0.24	0.33	1.01	2.05	1.08
Exhst CO:										
Exhst NOX:										
48 44 44 44 44 44 44 44 44 44 44 44 44 4						·				

MEHORANDOM

September 18, 1991 Date:

David Twiddy, PD&E Administrator To:

James H. Edwards, Transportation Planning Manager From:

By: Fawzi Bitar, Transportation Planning Coordinator

Copies to: File, Dan Doebler

Subject: W.P.I. # : 7240004, 5

State Proj. #: 99007-1402 FAP No : IR-9999(43) County : Hillsborough

The above referenced project has a District-Wide number, that is why it was not in the Tampa MPO's Transportation Improvement Program (TIP), Fiscal Year 1987/88 through 91/92. It is part of their 2010 Long Range Transportation Plan.

/FKB

C2380.30 March 11, 1994

MEMORANDUM

TO:

Elaine Illes

FROM:

Daniel Doebler

SUBJECT:

Agency Comments on the TIS EIS Air Quality Report

(December 1993)

FDOT transmitted FDEP, Hillsborough County EPC and Pinellas County DEM comments for the TIS EIS Air Quality Report on February 24, 1994. Responses to those comments are as follows:

FDEP Comments

Comment 1:

Meteorological Persistence Factor (MPF)

The analysis identifies a 0.6 MPF. The generally accepted MPF is 0.8. When the MPF (0.8) is multiplied by the Traffic Persistence Factor (TPF) of 0.75, the resulting overall persistence factor of 0.6 can be used to convert one-hour to eight-hour concentrations.

Attached, is a copy of Figure C-1, from the Department of Environmental Protection's draft modeling guidelines. The curves on this graph were developed from actual monitoring data and can be used to correct for overestimated persistence factors.

Response 1:

As required by the Phase II Scope of Services Document (Section A.5.b.14), the Air Quality Analysis was performed in accordance with Part 2, Chapter 16 of the PD & E Manual. Section 16.2.2.5.2.b of PD & E Manual states that the usual meteorological persistence factor to be used is 0.6. FDOT has been using this factor for all projects statewide since the early 1980's. The discrepancy between the FDOT methodology and FDEP methodology has existed since the drafting of the FDEP guidelines in 1986. Since the meteorological persistence factor used in the analysis is consistent with FDOT methodology, revision of the Air Quality Report is not required.

Ms. Elaine Illes March 11, 1994 Page 2

Comment 2:

Receptor Locations

I-275/North Boulevard Interchange - Relocate Receptor 1 or add an additional receptor at the SW corner of the church property. Although this area of the property is presently undeveloped, at interstate buildout (2010) it may be developed.

Response 2:

FDEP guidelines require the siting of receptors in each intersection quadrant based on a distance from the roadway edge. PD & E guidelines (Section 16-2.2.4.2) require the selection of reasonable worst-case receptor sites based on land use and the expectation of people to spend a significant amount of time. As documented in the Air Quality Report, receptors were sited in residential yards, a recreational park and front walkways of a church and business. Notably, five of the receptors are in close proximity to the modeled roadways. Since receptor placement is consistent with FDOT methodology, revision of the Air Quality Report is not required.

Comment 3:

I-275/Dr. Martin Luther King, Jr. Boulevard - A receptor should be sited at the NW corner of the Hillsborough County Adult High School Property. As with the above church property, future (2010) use should be considered.

Response 3:

Again, receptors were sited at reasonable, worst-case locations (i.e., residential yards and front walk of businesses) consistent with FDOT methodology. Notably, four of the receptors are in close proximity to the modeled roadways.

Comment 4:

Background Carbon Monoxide (CO) Concentration

The background CO concentration reported is 3.0 ppm. This concentration is usually associated with the central business district (CBD). The two interchanges analyzed are both outside the CBD. A more appropriate default value for those locations would be 2.0 ppm.

Response 4:

A background value of 2.0 ppm was initially used in the analysis. However, at the request of FDOT, the background value was increased to 3.0 ppm.

Ms. Elaine Illes March 11, 1994 Page 3

EPC Comments:

Comment 1:

On the surface, we see no problem with the CO and HC microscale dispersion analysis results, but would like to know why there was not a build/no build analysis done for oxides of nitrogen (NO_x) .

Response 1:

As stated in the PD & E Guidelines (Section 16-2.2.1.2), HC emissions should be analyzed only if the project meets the five stipulated criteria and a reviewing agency requests the analysis. Furthermore, NO_x should be included only if requested by another agency and FHWA concurs. Although not specifically requested by another agency, FDOT felt that an HC analysis would be appropriate because of the size of the project and to address the Interim Guidance For Determining Conformity issued by the USDOT and EPA.

Interest in NO_x emissions is a result of the EPA rule, 40 CFR Part 51, which replaced the Interim Guidance on December 27, 1993. The rule calls for an analysis of VOC and NO_x emissions in O₃ nonattainment areas, however, it also states that the analysis must be done on a regional basis. For determining conformity, a project must be analyzed under a "baseline" and "action" scenario as part of the areawide transportation system. An analysis of this magnitude is beyond the scope of this Air Quality Report. A "project only" analysis of NO_x or HC cannot be used to demonstrate conformity.

For the purpose of demonstrating conformity, the conformity section of the Air Quality Report has been revised to state that "this project is included in the urban area's current approved conforming TIP. . .". This statement should satisfy 40 CFR Part 51 and local agency concerns regarding HC and NO_x emissions which are precursors to O_3 formation.

COMMENT 2:

Please provide a more specific map/diagram to determine the actual number of lanes in each direction at the North Boulevard and Dr. Martin Luther King, Jr. Boulevard interchanges.

Response 2:

Figure 3 and 4 in the Air Quality Report depict conceptual design plans for the Preferred Alternative. These figures show the proposed number of lanes at each interchange.

Ms. Elaine Illes March 11, 1994 Page 4

Comment 3:

Why not model the I-4/I-275 junction since it appears that there will still exist a major slow down of traffic in this area?

Response 3:

A review of the Traffic Memorandum showed that interchange roads for the Preferred Alternative will be generally operating under free flow conditions at Level of Service C or better. Furthermore, traffic volumes and, hence, emissions will be spread over a wide area. In contrast, traffic at the I-275/North Boulevard interchange and I-275/Dr. Martin Luther King, Jr. Boulevard interchange will experience delay at traffic signals. Traffic volumes are also concentrated in a comparatively small area. The PD & E Guidelines (Section 16-2.2.2.2) require the analysis of the worst-case intersection. Review of the Traffic Memorandum shows the interchanges at North Boulevard and Dr. Martin Luther King, Jr. Boulevard to be the worst-case locations.

DEM COMMENTS

Comment 1:

It is appropriate for the MOBILE5.A model output to utilize the January 1st option for wintertime CO analysis. However, the MOBILE5.A model reflects the January 1st option when calculating the Hydrocarbon (HC) emission factors for the microscale analysis. Since the summer months have been shown to be the period with the higher emission values, the July 1st option for HC emission factors would be recommended.

In addition, the study does not comment on Oxides of Nitrogen (NO_x) emissions. The executive summary discusses HC, but fails to discuss NO_x . NO_x contributes as a precursor to form ozone (O_3) . Recent EPA guidance would indicate a need to evaluate NO_x emissions.

Response 1:

Based on 40CFR Part 51, HC and/or NO_x analysis at the project level is not appropriate to make a conformity determination. For further details, see the response to EPC Comment 1.

Comment 2:

Also, the MOBILE4.1 model output is not included in the analysis package.

Response 2:

MOBILE 4.1 was only used to calculate an idle emission factor. The MOBILE 4.1 model uses the same input file as the MOBILE5a model. The idle emission factor used in the analysis is documented in the CAL3QHC input files found in the Appendix.