Task A5a Air Quality Report

TAMPA INTERSTATE STUDY

State Project No. 99007-1402, WPI No. 7140004, FAP No. IR-9999(43)

Interstate 275 (I-275) from the Howard Frankland Bridge/Kennedy Boulevard ramps to the Dale Mabry Highway interchange on the east and just north of Cypress Street on Memorial Highway (S.R. 60), Hillsborough County.

Prepared For The FLORIDA DEPARTMENT OF TRANSPORTATION

Prepared By GREINER, INC.

In Association With

KNIGHT APPRAISAL SERVICES, INC.
PIPER ARCHAEOLOGICAL SERVICES

Task A5a Air Quality Report

TAMPA INTERSTATE STUDY

State Project No. 99007-1402, WPI No. 7140004, FAP No. IR-9999(43)

Interstate 275 (I-275) from the Howard Frankland Bridge/Kennedy Boulevard ramps to the Dale Mabry Highway interchange on the east and just north of Cypress Street on Memorial Highway (S.R. 60), Hillsborough County.

Prepared For The FLORIDA DEPARTMENT OF TRANSPORTATION

Prepared By GREINER, INC.

In Association With

KNIGHT APPRAISAL SERVICES, INC. PIPER ARCHAEOLOGICAL SERVICES

EXECUTIVE SUMMARY

In accordance with Florida Department of Transportation (FDOT) guidelines, an air quality impact analysis was conducted to determine the effect of the proposed improvements to the Tampa Interstate System. The study limits for the design segment evaluated in the microscale analysis are I-275 from the east end of the Howard Frankland Bridge to east of the Dale Mabry Highway interchange including Memorial Highway (S.R. 60) from I-275 to just north of Cypress Street. The air quality impacts from proposed improvements within the study limits are addressed in an Environmental Assessment prepared for this design segment.

The results of the microscale analysis indicate that the proposed improvements will not cause, or contribute to, carbon monoxide (CO) concentrations above the one- and eight-hour National Ambient Air Quality Standards (NAAQS)--levels considered by the Environmental Protection Agency (EPA) to pose no significant health risk. Compared to the No-Build condition, CO concentrations are expected to be lower in the vicinity of the project as a result of increased motor vehicle mobility, faster operating speeds, and less stop-and-go driving.

Traffic operation analyses were conducted to evaluate the levels of service in transition areas. The analyses indicate that the volume-to-capacity ratios for the basic freeway segments in transition areas will be greater than the ratios for the ultimate improvement, but less than the ratios for the No-Build alternative. Similarly, the CO concentrations in the vicinity of the transition areas are anticipated to be greater than CO concentrations for the ultimate improvement but less than CO concentrations for the No-Build alternative. As with the worst-case sites modeled in the microscale analysis for the Build and No-Build alternatives, CO concentrations at reasonable receptor sites in the vicinity of transition areas are also expected to be well under the NAAQS for CO.

The results of the hydrocarbon (HC) emission inventory for this project indicate that the Build alternative will lower motor vehicle HC emissions by approximately 17 percent in the year 2010. This decrease is a result of improved roadway operating conditions within the Tampa Interstate System which will increase average vehicle speeds and correspondingly decrease excess HC emissions.

The Tampa Interstate System corridor is located in an air quality non-attainment area which has transportation control measures in the State Implementation Plan (SIP) which was approved by the EPA on June 15, 1981. The Federal Highway Administration (FHWA) has determined that this project is included in the Tampa Urban Area Metropolitan Planning Organization's Long Range Transportation Plan (LRTP). The FDOT District Seven Planning Department has also documented by memorandum that the project is part of the LRPT. Therefore, pursuant to 23 CFR 770.9, this project conforms to the SIP.

Construction activities causing short-term air quality impacts in the form of dust will be minimized by adherence to FDOT Standard Specifications for Road and Bridge Construction.

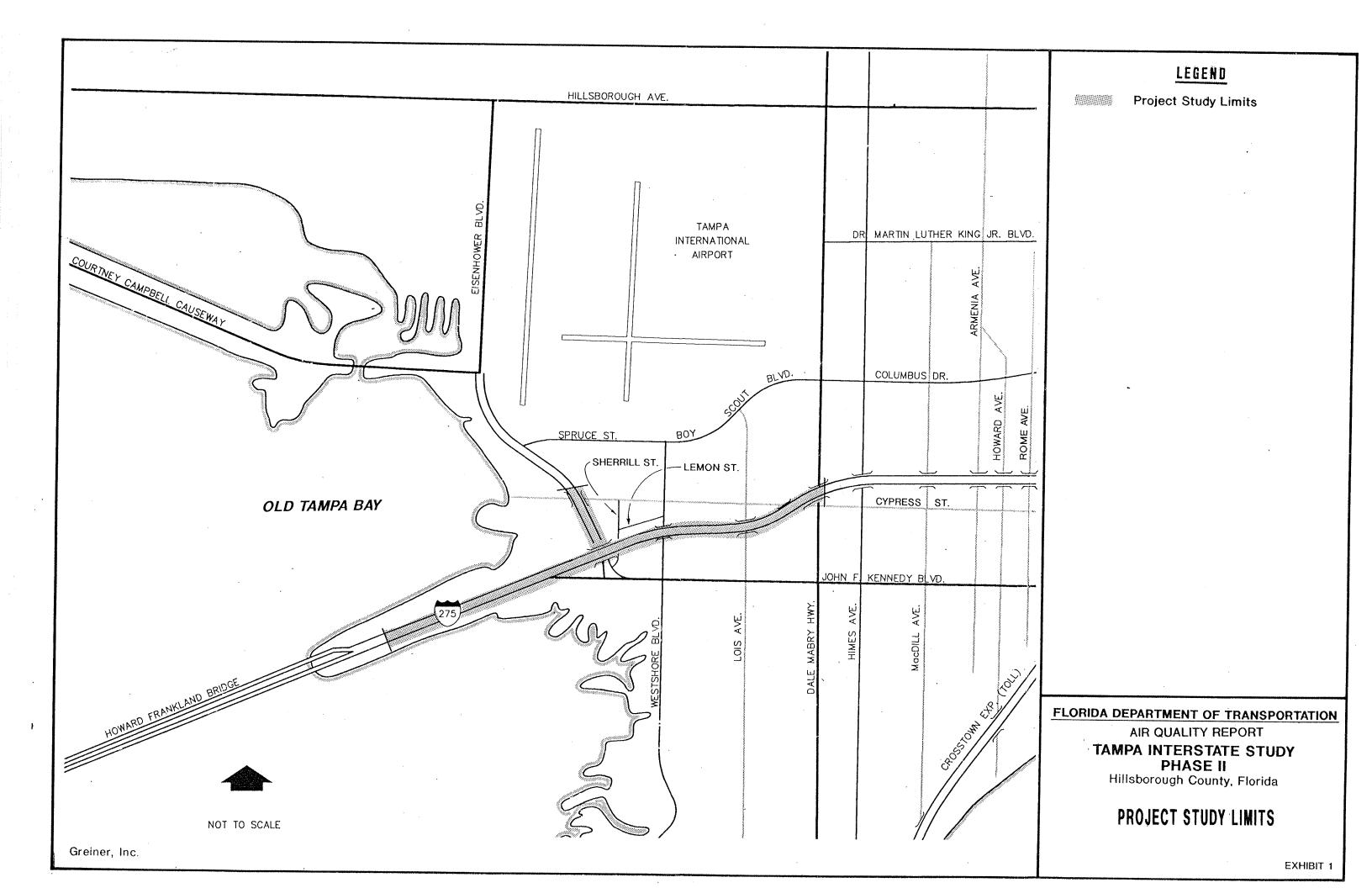
TABLE OF CONTENTS

	Page
Executive Summary List of Exhibits List of Tables	iv iv
I. INTRODUCTION	1
II. AIR QUALITY IMPACT ASSESSMENT	2
 A. Existing Conditions B. Microscale Analysis 1. Methodology 2. Results C. Hydrocarbon Emissions 	2 4 6 10 12
III. CONSTRUCTION IMPACTS	12
IV. CONCLUSION	13
V. AGENCY COORDINATION	13
LIST OF REFERENCES	
APPENDIX	

LIST OF EXHIBITS

Exhibit No.	<u>Title</u>	<u>Follows</u>
1	Project Study Limits	Page 1
2	Microscale Analysis Study Area	Page 6
3	Receptor Locations at the I-275/Dale Mabry Highway Interchange	Page 7

LIST OF TABLES


Table No.	<u>Title</u>	Page
1	Air Quality Monitoring Data in the Vicinity of the Tampa Interstate Study Area	3
2	Current Attainment/Non-Attainment Designations for Hillsborough County	5
3	Summary of Microscale Analysis Modeling Parameters	8
4	Predicted One- and Eight-Hour, Worst-Case Carbon Monoxide Concentrations in the vicinity of the I-275/Dale Mabry Highway Interchange for the Year 2010	11

I. INTRODUCTION

The Florida Department of Transportation (FDOT) is investigating the feasibility of improving the Tampa Interstate System in Hillsborough County, Florida. The purpose of the investigation is to produce a Master Plan, conceptual design and environmental data base for improvements to Interstate 4 (I-4), Interstate 75 (I-75) and Interstate 275 (I-275). For the purpose of developing the Master Plan, Phase I of the study, the Tampa Interstate System was divided into 6 study segments which were further subdivided into 17 individual design segments. Following acceptance of the Master Plan, provisions were set forth by FDOT to implement Phase II of the Tampa Interstate Study.

Phase II is intended to satisfy requirements for environmental documentation. This Air Quality Report specifically addresses one of the seventeen design segments established in Phase I. The design segment considered is shown in Exhibit 1 and includes I-275 from the east end of the Howard Frankland Bridge to east of the Dale Mabry Highway interchange and Memorial Highway (S.R. 60) from I-275 to just north of Cypress Street. Further planning and design details regarding the proposed Tampa Interstate System Study are provided in the Environmental Assessment and Preliminary Engineering Report. 1

The objective of this report is to describe existing air quality conditions in the vicinity of the project; describe the methodology used to predict future air quality conditions in the project area; and to discuss the results of, and provide supporting materials for, the analyses. In accordance with the FDOT "Air Quality Analysis Guidelines," the assessment included a microscale analysis and an emissions inventory.²

II. AIR QUALITY IMPACT ASSESSMENT

A. Existing Conditions

Monitoring is the most reliable means of determining ambient air quality conditions. The Hillsborough County Environmental Protection Commission (EPC), in cooperation with the Florida Department of Environmental Regulation (FDER), operates several air monitoring stations located near the study area. From the monitoring data, a general profile of existing air quality conditions in the vicinity of the project can be derived.

A synopsis of the most recent air monitoring data obtainable (1990) is presented in Table 1. This information is summarized in terms of monitoring station location, distance and direction from the study area, pollutant(s) measured and maximum recorded concentrations. Comparison of these data with the National Ambient Air Quality Standards (NAAQS) is also made.

Based on air monitoring data obtained from the monitoring stations, ozone (O₃) is the air pollutant of primary concern in the vicinity of the Tampa Interstate study area. The formation of O₃ is a long-term photochemical reaction involving solar radiation, nitrogen dioxide (NO₂), and hydrocarbons (HC). In general terms, NO₂ and HC are emitted into the atmosphere in the urban core areas and air currents transport the oxidants to the suburbs. As such, violations of the NAAQS for O₃ are generally considered regional in nature.

TABLE 1

AIR QUALITY MONITORING DATA IN THE VICINITY OF THE TAMPA INTERSTATE STUDY AREA

Exceeds Standard	N N O	N N N :	N N N	N N N	No	0 0 0 0 2 0 0 0
<u>Duration</u>	1-hour average 8-hour average	24-hour max Arithmetic mean Arithmetic mean	24-hour average 3-hour average 1-hour average	1-hour average 8-hour average	1-hour average	24-hour max Arithmetic mean 1-hour average 8-hour average
Air Quality <u>Standard</u> ^C	35 ppm 9 ppm	150 ug/m ² 50 ug/m ² 80 ug/m ²	365 ug/m 1300 ug/m³ .120 ppm	35 ppm 9 ppm	.120 ppm	150 ug/m ³ 50 ug/m ³ 35 ppm 9 ppm
Maximum Recorded Concentration ^b	mdd 6	48 ug/m ³ 29 ug/m ³ 21 ug/m ³	.124 ppm	mdd 8	.063 ppm	70 ug/m ³ 31 ug/m ³ 12 ppm 7 ppm
Pollutant(s) Measured	Carbon monoxide	Inhalable particulates Sulphur dioxide	Ozone	Carbon monoxide	Ozone	Inhalable particulates Carbon monoxide
Distance and Direction from the Study Area	2.1 miles, E	2.8 miles, SE		1.2 miles, N	0.3 miles, s	3.5 miles, NE
Monitoring Station <u>Location^a</u>	Downtown Tampa	Davis Island		НСС	Beach Park	Seminole School
Station <u>Number</u>	-	~		m	4	īU

Monitoring Station address:1. 200 Madison Ave.2. 155 Columbia Dr.

N. Dale Mabry Hwy./Tampa Bay St.
 Bay Way St.

5. 6201 Central Ave.

b Florida Department of Environmental Regulation, ALLSUM Report, 1990

c National Air Quality Standards established by the EPA.

ppm = parts per million ug/m^3 = micrograms per cubic meter

According to the Clean Air Act (CAA) Amendments of 1977, all areas within the state are designated with respect to the NAAQS as either attainment, non-attainment, or unclassifiable. Areas that meet the NAAQS are designated as attainment. Conversely, areas that violate the NAAQS are designated as non-attainment.

Finally, areas where data are insufficient for classification as either attainment or non-attainment are designated as unclassifiable. In areas designated as non-attainment, a State Implementation Plan (SIP) is developed to bring the area into compliance with the NAAQS. The current attainment, non-attainment and unclassifiable designations for Hillsborough County are shown on Table 2.

As shown on Table 2, the U.S. Environmental Protection Agency (EPA) has designated all of Hillsborough County as a non-attainment area for O₃ and a portion of the county as a non-attainment area for total suspended particulates (TSP). As a result of these designations, Hillsborough County is currently subject to the guidelines of a SIP. Essentially, the SIP calls for the reduction and control of TSP and the precursors to O₃, HC and NO₂.

The CAA Amendments of 1990 further designate the degree of the O₃ non-attainment status as either "severe," "moderate" or "marginal" and identify any necessary changes to the SIP. Hillsborough County has been classified as a marginal O₃ non-attainment area.

B. <u>Microscale Analysis</u>

The purpose of the microscale analysis is to predict the impact of the proposed improvements on future air quality conditions in the project vicinity. Specifically,

TABLE 2

CURRENT ATTAINMENT/NON-ATTAINMENT DESIGNATIONS FOR HILLSBOROUGH COUNTY^a Tampa Interstate Study

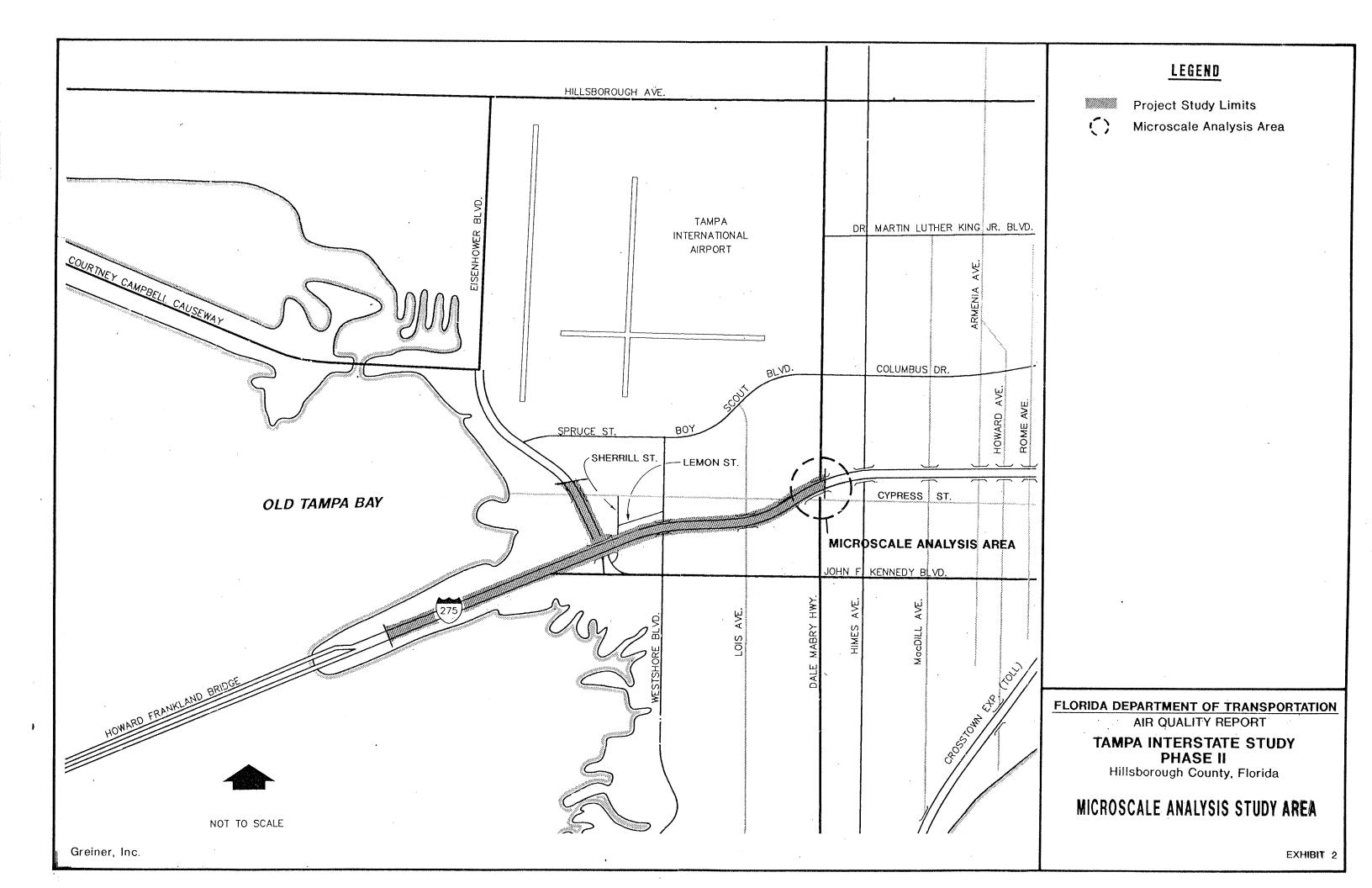
<u>Pollutant</u>	Designation
Carbon monoxide	Attainment
Nitrogen dioxide	Attainment
Sulfur dioxide	Unclassifiable
Particulate matter - Total suspended particulate - Inhalable particulate	Non-attainment ^b Unclassifiable
Ozone	Non-attainment
Lead	Attainment

Designations: Attainment: areas within which the NAAQS have not been violated.

Non-attainment: areas within which the NAAQS have been violated.

Unclassifiable: areas which cannot be classified as attainment or non-attainment.

a Source: Section 17-2, (410), (420), and (430) of the Florida Administrative Code.

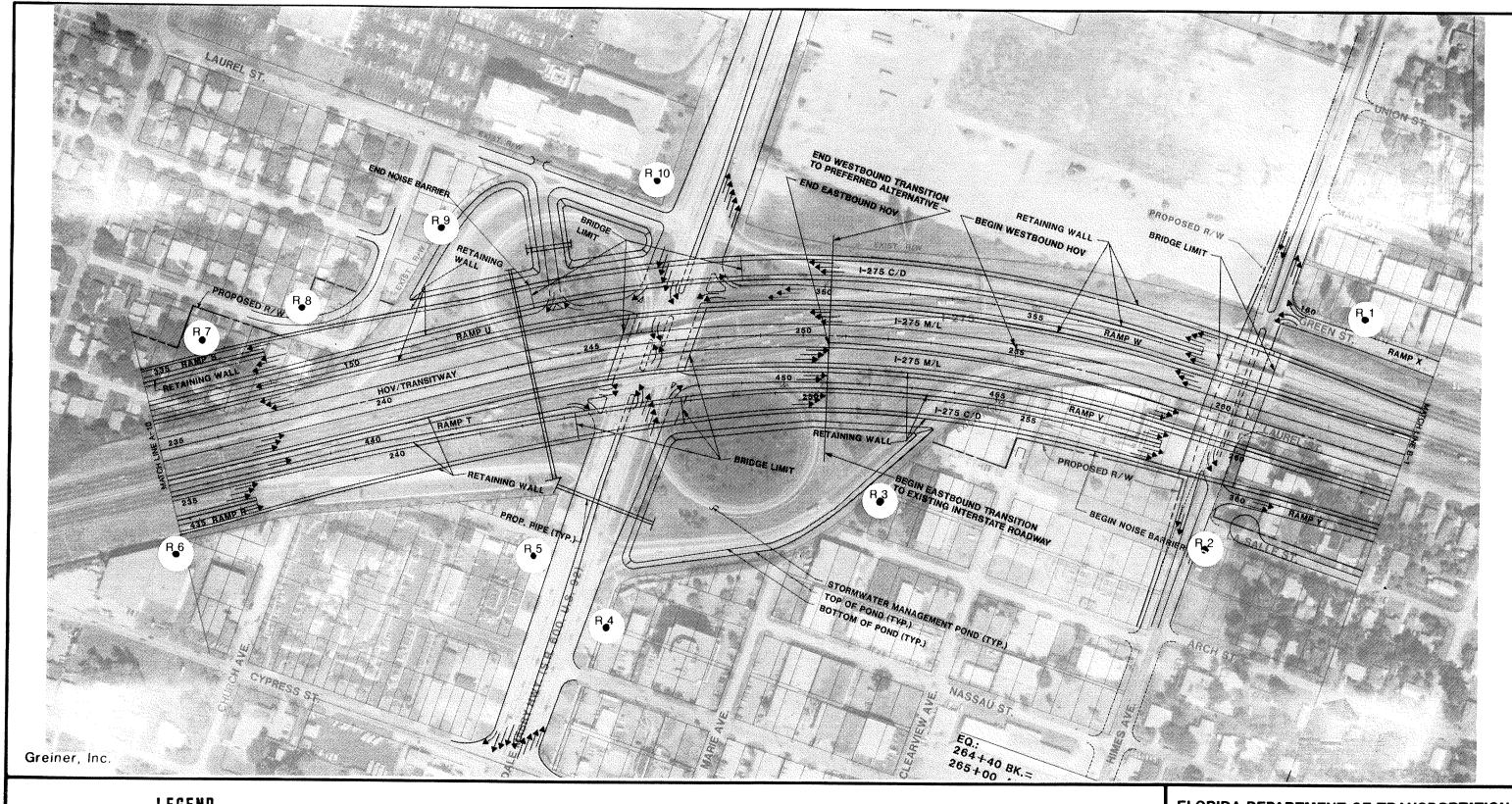

b Restricted to a portion of Hillsborough County falling within the area of a circle having a centerpoint at the intersection of U.S. 41 South and State Road 60 and a radius of 12 kilometers.

the analysis examines the generation and localized transport of carbon monoxide (CO), the most prevalent air pollutant emitted from motor vehicles. The results of the analysis are used to compare the No-Build and Build conditions and to indicate whether or not motor vehicle emissions associated with the project would contribute to CO concentrations in exceedance of the NAAQS.

1. Methodology

In accordance with the FDOT Air Quality Analysis Guidelines, a "worst-case" approach was taken in the microscale analysis. For example, traffic data and aerial photography showing the concept design (April 1991) were reviewed to identify areas having a combination of heavy traffic volumes, low vehicular speeds, and nearby reasonable receptor sites. Receptor sites are areas where the public has routine access and may spend one to several hours. The premise of this approach is that CO concentrations elsewhere along the project corridor will be lower than these worst-case locations. Based on these factors, the I-275/Dale Mabry Highway interchange was selected for the microscale analysis. Nearly all the property surrounding the interchange has been developed for residential or commercial use. The heaviest traffic volumes within the study limits for the expressway/freeway, intersecting arterial and ramp system are projected to occur at this location. Traffic data projections also show the associated intersections on Dale Mabry Highway to have the highest volume-to-capacity ratio and longest average delay per vehicle within the study limits. The location of the microscale analysis study area is shown in Exhibit 2.

CO concentrations were predicted for the year 2010 to coincide with the project's design year. For comparative purposes, the microscale analysis was performed for both the No-Build and Build project alternatives.



Implementing all of the improvements recommended in the Tampa Interstate Study Master Plan will require numerous staged construction projects. The opening year for the various projects will be staggered over several years and the opening of a particular project segment will affect traffic volumes and operational characteristics on other project segments with different opening dates. Therefore, since a single opening year for the ultimate improvement of the Tampa Interstate System cannot be established an opening year analysis was not conducted.

Ten receptors were simulated at the I-275/Dale Mabry Highway interchange. Sensitive sites within the vicinity of the I-275/Dale Mabry Highway interchange include residences and businesses. The reasonable receptor sites closest to the interchange were modeled. The modeled receptors include residences in the southeast and northwest quadrants (Receptors 2, 3, 7 and 8) and the front walks of businesses in the northeast, southeast, southwest and northwest quadrants (Receptors 1, 4, 5, 6, 9 and 10). As with the selection of the worst-case microscale analysis areas, the premise of modeling the closest reasonable receptors is that CO concentrations at other reasonable receptors will be lower. The locations of the receptors are shown in Exhibit 3.

In accordance with FDOT guidelines, the computer models used in the microscale analysis include MOBILE5a and CALINE3.³ A summary of input parameters is provided in Table 3.

The MOBILE5a mobile source emissions model from EPA was used to compute area specific motor vehicle emission factors. Hillsborough County has recently implemented a motor vehicle inspection/maintenance (I/M) program as a means of reducing mobile sources of air pollution. Therefore, I/M program input parameters, provided by EPC, were used in MOBILE5a.

LEGEND

Receptor

FLORIDA DEPARTMENT OF TRANSPORTATION

AIR QUALITY REPORT
TAMPA INTERSTATE STUDY

PHASE II
Hillsborough County, Florida

RECEPTOR LOCATIONS AT THE 1-275/ DALE MABRY HIGHWAY INTERCHANGE

EXHIBIT 3

TABLE 3

SUMMARY OF MICROSCALE ANALYSIS MODELING PARAMETERS Tampa Interstate Study

<u>Models</u>	Parameter	<u>Value</u>
MOBILE5a,	* Region	Low Altitude
CALINE3	* Operating mode	20.6% cold, 27.3% hot
	* Ambient temperature	52 ° F
	* Vehicle mix	Default
	* Analysis year	2010
	* Stability class	D
	* Wind speed	1 meter/second
	* Wind direction	0° - 350° @ 10° intervals
	* Mixing height	1000 meters
	* Persistence factors	
	- Traffic	0.75
	- Meteorological	0.60
	* Surface roughness	108 centimeters
	* Inspection/maintenance	Yes
	- Program start year	1992
	- Stringency level	20%
	- First model year	1975
	- Last model year	2020
	- Pre -1981 waiver rate	20%
	- 1981 and beyond waiver rate	20%
	- Compliance rate	90%
	- Program type	Centralized
	- Inspection frequency	Annual
	- Vehicle types	LDGV, LDGT1, LDGT2
	- Test type	Idle test
	- Alternate I/M credits	Default

The CALINE3 line source dispersion model was used to analyze free flow and excess

motor vehicle emissions for roadways within the microscale analysis study area. Free

flow emissions are those attributable to moving motor vehicles and excess emissions

are associated with stopped or idling motor vehicles.

Peak-hour traffic volumes and roadway operating conditions were obtained from the

Tampa Interstate Study: Traffic Memorandum published separately.⁴ Other input

data such as vehicle mix, operating mode and air temperature were obtained from the

FDOT Air Quality Analysis guidelines. Input data for the modeled roadway links are

provided in the Appendix of this report.

In order to determine the most critical wind angles, a series of 36 wind directions

(10°-360° at 10° intervals) was simulated over the modeling grid. Other simulated

worst-case meteorological factors include an average wind speed of one meter per

second, an atmospheric mixing height of 1,000 meters and a stable atmosphere (Class

D).

The computer modeling of worst-case traffic and meteorological data was conducted

for the peak one-hour period. To account for the long-term variation in traffic and

meteorological data over time, persistence factors were used to convert the one-hour

modeled conditions to comparable worst-case eight-hour conditions. In this way, the

results can be compared to the NAAQS which are also based on one-hour and eight-

hour time periods. For this analysis, traffic and meteorological one-hour to eight-hour

persistence factors of 0.75 and 0.60, respectively, were used. The eight-hour CO

concentrations were derived from the one-hour values by the following formula:

 $CO_{8hr} = [(CO_{1hr} - background) \times MPF \times TPF] + background$

Where: MPF:

MPF = meteorological persistence factor (0.6)

TPF = traffic persistence factor (0.75)

Background = background CO.

ς

To account for CO sources beyond the study area, a background CO value was added to the modeled one-hour and the computed eight-hour results. In the absence of site-specific background CO monitoring data, a background CO value of 3.0 ppm was used for the analysis.

2. Results

The results of the microscale analysis are presented in Table 4. The results include contributions from future-year traffic and background CO concentrations. Both the one-hour and eight-hour values are provided.

As shown in Table 4, for the year 2010 the predicted highest one- and eight-hour CO concentrations under the No-Build alternative at the I-275/Dale Mabry Highway interchange are 12.8 ppm and 7.4 ppm, respectively. Under the Build alternative, the highest one-hour value is 8.5 ppm and the highest eight-hour value is 5.5 ppm, a decrease compared to the No-Build alternative. CO concentrations are expected to remain below the NAAQS at all receptor sites in the vicinity of the I-275/Dale Mabry Highway interchange for the Build and No-Build alternatives.

Traffic operation analyses were conducted to evaluate the levels of service in the transition areas. The analyses indicate that the volume-to-capacity ratios for the basic freeway segments in the transition areas will be greater than the ratios for the ultimate improvement, but less than the ratios for the No-Build alternative. Similarly, the CO concentration in the vicinity of the transition areas are anticipated to be greater than CO concentrations for the ultimate improvement but less than CO concentrations for the No-Build alternative. As with the worst-case sites modeled in

PREDICTED ONE-HOUR AND EIGHT-HOUR WORST-CASE CARBON MONOXIDE CONCENTRATIONS
IN THE VICINITY OF THE I-275/DALE MABRY HIGHWAY INTERCHANGE FOR THE YEAR 2010
TAMPA INTERSTATE STUDY

	No-	Build	Build		
Receptor ^a	1-Hour ^D <u>(ppm)</u>	8-Hour ^b (ppm)	1-Hour ^b (ppm)	8-Hour ^b (ppm)	Location/Description ^C
1	12.8	7.4	6.1	4.4	NE Quad/Business, front walk
2	6.5	4.6	5.3	4.0	SE Quad/Residential side yard
3	8.4	5.4	5.3	4.0	SE Quad/Residential backyard
4	9.0	5.7	7.8	5.2	SE Quad/Business, front walk
5	10.1	6.2	8.1	5.3	SW Quad/Business, front walk
6	11.5	6.8	6.5	4.6	SW Quad/Business, sidewalk
7	9.3	5.8	6.3	4.5	NW Quad/Residential backyard
8	9.7	6.0	6.4	4.5	NW Quad/Residential front yard
9	9.8	6.1	6.2	4.4	NW Quad/Business, sidewalk
10	11.4	6.8	8.5	5.5	NW Quad/Business, sidewalk

a See Appendix for receptor locations.

Ambient Air Quality Standards for carbon monoxide -- levels considered not to pose any significant health risks:

One-Hour Standard = 35 parts per million Eight-Hour Standard = 8 parts per million

b Includes background concentration of 3.0 ppm.

c NE Quad = Northeast Quadrant

NW Quad = Northwest Quadrant

SE Quad = Southeast Quadrant

SW Quad = Southwest Quadrant

the microscale analysis for the Build and No-Build alternatives, CO concentrations at reasonable receptor sites in the vicinity of transition areas are expected to be well under the NAAQS for CO.

C. <u>Hydrocarbon Emissions</u>

As previously stated, Hillsborough County is designated as a non-attainment area for O3. One of the primary pollutants emitted by highway vehicles, HC, can result in O3 buildup on a regional scale. HC emissions were calculated for the Build and No-Build alternatives to determine the effect proposed improvements would have on this pollutant.

The HC computations were based on average daily traffic conditions projected for the year 2010. Roadway segment travel distances measured from roadway plan sheets, vehicle speeds derived from the 1985 Highway Capacity Manual,⁵ traffic volumes obtained from the Tampa Interstate Study: Traffic Memorandum and motor vehicle emission factors computed by MOBILE5a were used in the calculations.

Based on these results, 230 tons/year of HC emissions are predicted for the Build alternative and 277 tons/year are predicted for the No-Build alternative indicating that proposed improvements will decrease HC emissions by about 17 percent. This decrease is a result of improved roadway operating conditions which will increase average vehicle speeds and correspondingly decrease HC emissions.

III. CONSTRUCTION IMPACTS

Construction activities will cause minor short-term air quality impacts in the form of dust from earthwork and unpaved roads and smoke from open burning. These impacts will be minimized by adherence to all State and local regulations and to the FDOT Standard Specifications for Road and Bridge Construction.

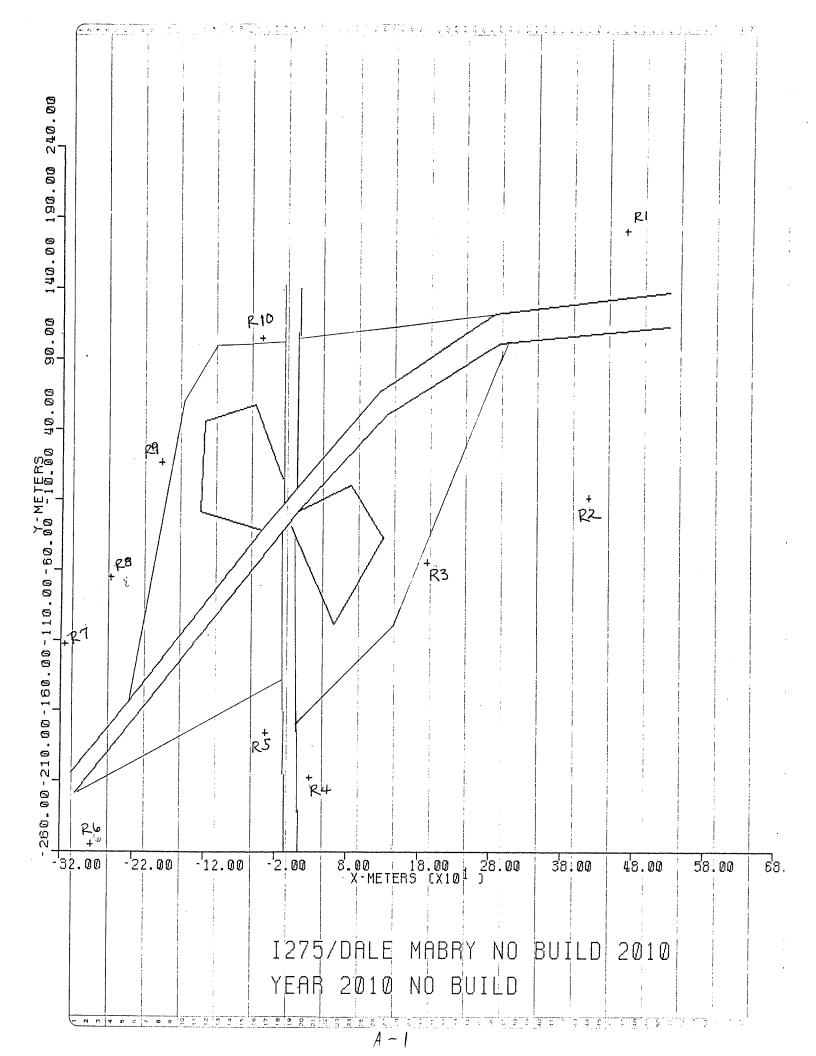
IV. CONCLUSION

Based on the microscale dispersion analysis results, the Tampa Interstate project will not cause, or contribute to, CO concentrations above the one- and eight-hour NAAQS for CO. The analysis indicates that CO levels under the Build alternative will be lower than concentrations under the No-Build alternative.

The project is in an air quality non-attainment area which has transportation control measures in the SIP which was approved by the EPA on June 15, 1981. The Federal Highway Administration (FHWA) has determined that this project is included in the Tampa Urban Area Metropolitan Planning Organization's Long Range Transportation Plan (LRTP). A memorandum documenting the FDOT District Seven Planning Department's certification that the project is part of the LRTP is in the appendix. Therefore, pursuant to 23 CFR 770.9, this project conforms to the SIP.

V. AGENCY COORDINATION

Federal, state and local agencies were notified of the proposed action through the Advance Notification process. No comments concerning air quality issues were received in response to the Advance Notification packages.


LIST OF REFERENCES

- 1. <u>Tampa Interstate Study: Preliminary Engineering Report</u>, Prepared for the Florida Department of Transportation; Prepared by Greiner, Inc., May 1991.
- 2. <u>Project Development and Environmental Guidelines</u>, Florida Department of Transportation, July 1988.
- 3. MOBILE 5a. Chapter 2, U.S. Environmental Protection Agency, March 1993, CALINE 3 A Versatile Dispersion Model for Predicting Air Pollutant Levels near Highways and Arterial Streets, California Department of Transportation, November 1979.
- 4. <u>Tampa Interstate Study: Traffic Memorandum</u>, Prepared for the Florida Department of Transportation; Prepared by Greiner, Inc., April 1991.
- 5. FDOT Highway Capacity Manual, Transportation Research Board, 1985.
- 6. Florida Department of Transportation Standard Specifications for Road and Bridge Construction, State of Florida Department of Transportation, 1991.

APPENDIX

TABLE OF CONTENTS

<u>Item</u>	Page
I-275/Dale Mabry Highway, 2010 No-Build	
Analysis Area CALINE3 Results, Model Run No. 1 CALINE3 Results, Model Run No. 2	A-1 A-2 A-19
I-275/Dale Mabry Highway, 2010 Build	
Analysis Area CALINE3 Results, Model Run No. 1 CALINE3 Results, Model Run No. 2	A-37 A-38 A-56
MOBILE5a Emission Factors	A-73
FDOT Certification Memorandum	A-78

PAGE 1

JOB: 1275/DALE MABRY NO BUILD 2010

RUR: 2010 NG BUILD

II. LINK VARIABLES

LINK DESCRIPTION	*	LI	NK COORD	INATES ()	K !	*	GINE LENGTH	LINE BRG	TYPE	AbB	g;	H	¥
	*	X1	71	X2	¥2	*	(K)	(BEG)			(G/MI)	(K)	(K)
A. KABRY SB DGLAY	*	-11.	274.	-12,	82.	- * *	192.	180.	AG	6188.	46.5	.0	14.6
B. MABRY SB MIDSEGI	¥	-12.	82,	-12,	Ē,			180,	ÁĞ	3115.	46,5	. 9	11.0
C. MABRY SE MIDSEG2	*	-13.	Ē,	-12.	-99.			180.	AG	2918.	46.5	.0	14.6
D. MASRY SB DEPART	*	-12.	-99.	-9.	-366.	ı	267.	173.	àG	3000	13.6	.(17.1
E. MABRY NE PREE	*	9.	-96ê,	ĉ.	-295,	*	:ĉ.	358.	រូ ជំ គឺជំ	2002.	÷ :	, Ç	17,1
P. MABRY NB DELAY	*	€.	-230.	5.	-188.	×	122.	359.	r.v.	2032.	SÉ.5	.0	14.8
G. MABRY NE MIDSEGI	¥	5.	-1ô£.	2.	-29,	¥	133.	359.	h3	1602.	16.6	ŗ.	11.0
H. MABRY NE MIDSEG2	x	2.	-39,	3,	82.	Ż	111.	:.	2.)	2025.	26.5	, ĉ	14.8
I. MARRY NE PEPART	¥	5.	82.	ê.	274.	Ż	192.		AG.	3186.	27,4	.0	11.0
J. WB OFF RAMP FREE	x	285.	194	157.	194.	Ż	129.	262.	ÁÛ	338.	38.5	.0	3.0
E. WE OFF RAMP DELAY	*	157.	194.	3.	82.	ż	165.	262.	άű	898.	53.5	, (7.3
L. WE ON HAMP SECT	×	-12.	22.	- 67.	g:.		95,	269.	ÅÜ	1336.	36.5	.0	7.0
M. WE ON EAME SEGS	x	-107.	81.	-152.	43.	*	60.	230.	AG	1586.	36.E	, ĉ	5.7
N. WE ON RAMP SECS	*	-152.	43.	-229.	-155.		212.	201.	λG	1186.	35.5	, ĝ	\$. 7
O. BE OFF RAMP	*	5001	-218.	-12.	-99,		310.	67.	ÁĞ	368.	27.4	.0	5.7
P. BB ON RAMP SEGI	¥	5.	-168.	23.	-104.	*	139.	60.	AG	1876.	€6.£	.0	11.7
G. BE ON RAMP SEGS	*	128.	-104.	293.	101.	*	263.	39.	ÆG	1676.	36.8	.0	5.7

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1960, M
BRG = 10. DEGREES	ZC = 108. CM	VD = .0 CK/S	AME = .0 PPM	•

	RECEPTOR	* * *	COOR X	DINATES ()	11	x x	(Add)
		X				¥	
	•	*	469.	186.		7	.0
2 .	2	Ż	418.	-3.	:	x	, O
ę,	<u> </u>	ż	191.	-56.		r	
4.	<u>F</u>	I	29.	-301,		x	1.2
ξ.	Ţ.	¥	~34.	-175.	:	Ì	5.0
ŝ.	8	*	-277.	-265.	1.5	¥	. 2
?.	7	x	-314.	-110.	:	¥	. 0
3.	6	*	-251.	-66.		¥ ·	10
٤,	Ş	x	-181.	:7.	1.5	ż	.(

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. HINUTES	MIXH = 1000. M
			AKB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COOR X	DIRATES (1	{ }	* * *	TOTAL + AMB (PPM)
1.	1	*	469.	180.	1.5	*	.0
2.	2	*	418.	-9,	1.5	*	, 0
ŝ,	<i>*</i>	*	191.	-55.	1.5	¥	1.1
1.	į	*	22.	-201.	1.5	¥	, \$
ξ.	£	×	-34.	-175.	1,5	Ż	2.9
ę,	2	×	-277,	-255.	1.5	×	. 6
7.	-	¥	-011	-115.	5.6	×	, Ę
5.		¥	-251.	-68.	1,5	×	.0
Ģ,	ç	*	-181.	, ,	:.5	±	. 1
10.	: n	±	-41.	101.	:,5	*	5.5

I. SITE VARIABLES

U = 1.0 H/S	CDAS = 4 (P)	78 = .0 CM/8	ATIM = 60. MINUTES	MIXE = 1000. M
BRG = 30. DEGREES	ZO = 108. CM	VE = .0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	*	acos	DINATES (w t		TOTAL + AMB				
RECEPTOR	*	X	y Y	Z		(PPK)				
	x	469.	190.	1.5	× ×	. (
2	×	418.	- ê .	1.5	*	, Q				
\$	*	191.	-58,	1 E	×	1.0				
4	×	29.	~207.	1.5	ż.	.9				
Č	r	-64.	-175.	1.5	Ý.	2.2				,
Ĉ	*	-275.	-255.	1.5	¥	1.8				
7	¥	-314.	-113.	1.5	*					
ô	x	-251.	-6€,	110	×	.5				
2	x	-181.		1.5	¥	.5				
10	*	-41,	105.	1.5	ž	5.6				
C = 1,6 M/S	ć.	LAS = 4	(<u>*)</u>)	Y\$ =		S CM/S	ATIN =	aa. Min	UTES	
RG = 40, BEGREES	V	Z0 = 108.		75 =		CM/S	AKB =	', Ean		

	RECEPTOR	* * *	COOR X	DINATES (1	Κ) Ζ	* * * *-	TOTAL + AMB (PPM)
1.	1	*	469.	180.	1.5	*	.9
2.	2	*	418.	-9.	1.5	*	.0
ŝ.	3	*	191.	-55,	1.5	*	. 4
4.	4	*	29.	-207.	1.5	*	.9
5.	Ę.	*	-34.	-175.	1.5	*	2.0
6.	6	ż	-277,	-255	1.5	*	.0
7.	7	*	-314.	-113.	1.5	*	.6
8.	8	*	-251.	-66,	1.5	*	1.0
9,	9	‡	-191.	17.	1.5	x	1.8
10.	10	ż	-41.	108.	1.5	*	3.5

U = 1.0 M/S	CDAS = 4 (D)	VS = .3 CM/S	ATTE = 8% MINUTES	MIXA = 1600. M
BRG = 50, BEGREES	Z0 = 108. CM	VD = .0 OM/S	AME = 10 SEM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		x				‡	TATEL	
		*	COORDINATES (M)				EMA +	
	RECEPTOR	*	У	፤	2 L	*	(PPK)	
1.		*	469,	180.	1,5	*		
2.	2	‡	418.	-9,	1.5	*	,0	
Ş.	2	*	191.	-55.	1.5	*	.1	
4.	4	*	29.	-20%.	1.5	¥.	.6	
5.	£	*	-34.	-175.	1.5	*	2.1	
ŝ.	6	*	-277.	-255.	1.5	Ż	. 3	
5	:	ż	-314.	-113.	1.5	*	1.1	
8.	8	*	-251.	-68.	1.5	*	1.3	
9.	ç	*	-181.	17.	1.5	*	2.1	
10.	10	ž.	-41,	105.	1.5	*	5.4	

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 10)	VS = .0 OM/S	ATIM = 80. MINUTES	M .3001 = EXIM
BRG = 80. DEGREES	20 = 100. CM	VD = .0 CK/S	AME = .0 PPM	

	RECEPTOR	¥ ¥ X		A GENYLES (R)		×	TOTAL - AVB
		 *		186.	1,5	I-	 ß
5.		*	418.	-9.	1.5		
ί.	\$	x	191.	- 5.7	1.6	ŕ	.0

4. 4 5. 5 6. 6 7. 7	* 29. * -34. * -277. * -314.	-175. -255. -113.	1.8 1.5 1.8	*	2 		
8. 8 9. 9		-66. 17.	1.5 1.5				
10. 10		105.					
I. SITE VARI	ABLES						
U = 1.0 M/S BRG = 70. DEGRE	CLAS = ES Z0 = 10	4 (D) 8. CM	VS = VE =		.0 OM/S	ATIM = 60. MINUTES AMB = .0 PPM	HIXH = 1000. H
III. RECEPTOR	LOCATIONS AND MODEL	RESULTS					
	*			ż	TOTAL		
		ORDINATES (+ AMB		
RECEPTOR	* <u> </u>	Y	? L	ź.	(ppk)		
1 × 1	* 469.	180.		*			
2. 2				¥			
3. 3	r 191.	-55.			.0		
4. 4	* 29.	-207.	1.5	*	, 9		•
5. 8	* -34.	-175.	1.5	*	2.9		
€. €	* -211.	-255.	1.5	*	, ŝ		
7. ?	* -314.	-113.	1.5	*	1.0		
8, 8	* -251.	-66.	: . 5	*	: . <u>?</u>		
9, 6	x -181.	11.	1.5	*	2.1		
i0. I0					3.1		

ij =	1.0 K/S	CLAE = 4 (D)	VS =	.0 CM/8	ATIM = 60. MINUTES	MINE = 1000. W
BRG =	80. DEGREES	Z0 = 108. CM	VE =	.0 CM/S	AME = .0 PPM	

RECEPTOR	* * *	0003 X	RDINATES () Y	X.) Z	* * * *-	TOTAL - AMB (PPM)
7 1 2 1 2	¥	469,	186.	1.5	¥	÷÷
2, 2	×	419,	-9.	: . 5	×	.0
3. 3	*	191.	≖£₹.	1.5	ķ	.0
4, 4	×	29,	-207.	1.5	¥	.0
5. 5	×	-34.	-175.	1.5	ż	2.6
€. €	*	-277,	-258.	1.5	x	.4
	x	-3 4	-113.	1.5	×	3.
§. 3	Y	-251,	-წმ.	:.5	±	
9. 3	Ý	-181.	17.	1.5	x	2.0
10.110	×	-4 : .	101.	1.:	*	3.4

	a a	ne o un te	ATTH - CO MINIMOS	MIXH = 1000, M
			ATIM = 60. MINUTES	nian - ivovi n
RRG = 90. DEGREES	7.0 = 108, CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C00F	DINATES II	{ } Z	* * * *-	TOTAL + AMB (PPM) .
1.	:	*	469.	180.	1.5	*	.0
2.	2	×	418.	- 3	1.5	*	.0
3.	3	*	191.	-55.	1.5	*	.0
4.	4	¥	29.	-207.	1.5	*	.0
ž.,	Ę	×	-34.	-175	1.5	*	2.2
6.	ê	x	-277.	-255,	1.5	×	. 0
Ξ,	7	*	-314.	-115.	1.5	*	. 8
3.	8	*	-251.	-56.	1.5	×	1.0
g.	7	*	-181.	19.	1.8	Ż.	:.8
10.	10	ı	-41.	105.	1.5	*	3.8

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1000. #
pad = 1AA nadapad	76 - 168 CV	AD = U UK\2	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	COOF	DINATES () Y	4) Z	* * *	TOTAL + AMB (PPM)
:.	1	*	469.	180.	1,5	×	.0
2.	2	×	418.	-9.	1.5	*	.0
3.	0	¥	191,	-55.	1.5	×	0
4.	4	¥	29.	-207.	1.5	×	.0
٤.	ŧ	*	-34.	-175.	1.5	ķ	1.9
ŝ.	Ĉ	ż	-275.	-255.	1.5	*	ů
÷,	7	ź	-314.	-113.	1.5	×	. 6
8	8	*	-251,	-66.	1.5	×	. 9
9	Ģ	×	-181.	17.	1.6	¥	1.6
	10	×	-4:.	196.	1.5	*	4.6

I. SITE VARIABLES

0 = 1.0 M/S	CDAS = 4 (D)	VS = .0 CM/8	ATIM = 60, MINUTES	MIXE = 1000, M
apo = 110 tempers	70 ± 108, 6V	25 m2 %. # ##	AME = .6 PPM	

RECEPTOR	* * *	C001	RDINATES (M) Z	* * *	TOTAL + AMB (PPM)
1. 1	*	469.	180.	1.5	*	.0
2. 2	*	418.	-9.	1.5	*	.0
3. 3	*	191.	-55.	1.5	*	.0
4. 4	*	29.	-207.	1.5	ŧ	. 5
5. 5	*	-34.	-175.	1.5	*	1.9
€, 6	*	-277.	-255.	1.5	*	. 2
7. 7	*	-314.	-113.	1.5	ź	. 5
8.8	İ	-251,	-66.	1.5	¥	3.
9. 9	*	-181.	17.	3.5	*	1,8
10.10	*	-41,	105.	1.5	*	5.9

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	*	C001	M)	ż ż	TOTAL EMA ÷	
RECEPTOR	*	χ	Y	2	*-	(PPM)
1 1	ż	469.	180.	1.5	x	. 6
2. 2	*	418.	-9.	1.5	*	. 0
3. 3	*	191.	-55;	1.5	*	.0
4. 4	*	29.	-207.	1.5	*	.0
5. 5	*	-34.	-175.	1.5	*	2.0
6, 8	x	-277.	-255.	1,5	ż	, 0
r	*	-314.	-113.	1.5	‡	, 3
8. g	*	-251.	-6E.	1.5	¥	. 7
g, g	*	-181.	17.	1.5	ż	1.5
10. 10 .	¥	-41.	105.	1.5	r	, + , +

I. SITE VARIABLES

III, RECEPTOR LOCATIONS AND MODEL RESULTS

* COGRDINATES (M) * - AME
RECEPTOR * X Y Z * (PPM.

1. 1	ź	469.	180.	1.5	*	.0
2. 2	*	418.	-9.	1.5	*	.0
3. 3	*	191.	-55.	1.5	*	.0
4.4	*	29.	-207.	1.5	į.	.0
5.5	*	-34.	-175.	1.5	*	2.1
6.6	*	-277.	-255.	1.5	Ż	. 9
7. 7	*	-314.	-113.		¥	
8.8	*	-251.		1.5	¥	.7
9. 9	*	-181.	17.	1.5	*	1.4
10. 10	*	-41,		1.5	¥	3.8

U = 1.0 M/S	$CLAS = 4 \{D\}$	VS = .0 CH/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 140. DEGREES	Z0 = 108, CM	VD = .0 CM/S	AME = .0 DDM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	000; X	ODINATES ()	M } 2	* *	TOTAL + AMB (PPM)
4		*	469.	180.	1.5	*	· (f
2.	2	*	418.	-9,	1.5	¥	.0
÷.	ć d	*	191,	-55.	1.5	*	.0
4,	4	*	29.	-207.	1,5	*	.0
5.	5	×	-34.	-178.	1.5	*	2.2
6.	6	*	-277.	-255.	1.5	Ż	.0
7.	-	*	-314.	-113.	1.5	x	.0
8.	8	*	-251.	-66.	1.5	*	. 6
9.	9	*	-181.	17.	1.5	Ý	1 9
10.	10	, , , , , ,	-41.	105.	5	×	3.8

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	YS = .0 CH/S	ATIM = 60. MINUTES	MIXH = 1000, M
BRG = 150. DEGREES	ZC = 108. CM	VE = .0 CM/8	AMB = .0 PPM	

		*	0001	COORDINATES (M)			TOTAL BMA :
	RECEPTOR	*	χ	Ÿ	2	ż	(PPK)
:		*	466.	180,	:.5	¥- *	.6
2.	ž	×	418,	-3.	1.5	x	.0
¿.		x	191.	-55.		×	.(
4.	Ļ	*	28.	- <u>\$0</u> 7	1.5	x	.0
5.	E	*	-34.	-175.	1.5	×	2.2

6.	6	*	-277.	-255.	1.5	‡	. 0
7.	7	*	-314.	-113.	1.5	*	. 0
8.	8	*	-251.	-66.	1.5	*	. 3
9.	9	‡	-181.	17.	1.5	*	1.2
10.	10	*	-41.	105.	1.5	*	4.0

U = 1.0 K/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. H
BRG = 160. DEGREES	ZO = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	i * *	СОО: Х	RDINATES () Y	H) Z	* * *	TOTAL + AMB (PPM)
1 1	*	469.	180.	1,5	*	.0
2. 2	¥	418.	-9,	1.6	¥	.0
3. 3	*	191.	-55.	1.5	*	.0
4, 4	*	29.	-2 07.	1.5	*	,0
5. 5	*	-34.	-175.	1.5	*	2.0
6. E	*	-277.	-255.	1.5	*	.0
7. 7	ž.	-314.	-113.	1.5	*	.0
8. 8	*	-251.	-66.	1.5	*	.3
9.9	*	-181.	17.	1.5	*	1.0
10. 10	*	-41,	108.	1.5	*	4.2

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CH/S	ATIM = 60. MINUTES	MIXH = 1000, M
BRG = 170. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

	RECEPTOR	* * *	0007 X	RDINATES (() Z	* * * *-	TOTAL + AMB (PPM)
1.	1	*	469.	180.	1.5	ź	. 6
3.	2	x	418.	-ŷ.	1.5	X	.0
3.	÷	ŕ	191.	-5ē.	1.5	¥	.0
4	4	×	20.	-207.	1.5	¥	
5.	5	×	- 54.	-175.	1.5	*	;
6.	ű	x	-277.	-255.	1.5	x	. 0
7.	?	¥	-314.	-113.	1.5	¥	.0
8.	8	¥	-281.	-66,	1.5	×	.1
Ç,	Ĝ	x	-181.	. n		×	.8

U = 1.0 M/S CLAS = 4 (D) VS = .0 CM/S ATIM = 60. MINUTES MIXH = 1000. M BRG = 180. DEGREES ZG = 108. CM VD = .0 CM/S AMB = .0 PPM

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	C00F	DINATES (1	() Z	* * *	TOTAL + AME (PPK)
1.	1	İ	469.	180.	1.5	×	.0
2.	2	r	418	-9.	:.5	×	.0
9.	ć	¥	191.	-55.	1.5	*	.€
4,	4	x	29.	-207.	1,5	*	â,
5.	£	¥	-34.	-17E.	1.5	×	, f
١,	ŝ	1	-277	-255.	1.5	*	4
7.	Ī	*	-314.	-110.	1.5	¥	.0
8.	ę	×	-251.	-66.	1.5	*	.0
9.	Ģ.	×	-181.		1.8	*	.9
10.	10	*	-41.	105.	1.5	¥	2.1

SITE VARIABLES

U = 1.0 M/S CLAS = 4 (D) VS = .0 CM/S ATIM = 60. MINUTES MIXH = 1900. M BRG = 190. DEGREES Z0 = 108. CM VD = .0 CM/S AMB = .0 PPM

	RECEPTOR	* *	COOF X	udinates (! Y	{ } Z	* * *	(Mdd) + YRB + CAYP
1.	1	r	469.	180.	1,5	*	, û
2.	2	*	418.	-9.	1.5	*	. 0
3.	Ş	×	191.	-55.	1.5	Ŷ	. C
4.	4	*	29.	-207.	1,5	x	
Š,	5	*	-34.	-175.	1.5	×	.1
6.	ŝ	×	-277.	-255.	1.5	ŗ	.0
ą i i	7	¥	-314.	-113.	1,5	Ż.	.0
ŝ.	8	*	-251,	-88.	1.5	x	, 3
Ç	9	*	-181.	11.	1,5	×	. 8
0	10	×	-41,	105	1.5	Ż	.9

U = 1.0 H/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. H
BRG = 200, DRGRRRS	70 = 108. CM	Vn = .0 cm/s	AMR = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C00F	RDINATES (I	K } Z	* * *	(PPK) + AMB TOTAL
1.	:	*	469.	180.	1.6	*	.0
2.	2	*	418.	-9,	1.5	*	.0
3.	3	*	101.	-55.	1.5	*	.0
4.	Į.	×	29.	-207.	1.5	x	2.0
5.	5	*	-34.	-175.	1.5	¥	.0
ô.	ŝ	×	-277.	-255.	1.5	¥	,0
7.	7	*	-911	-110.	1.5	*	.0
8.	8	Ż	-251.	-66.	1.5	x	, 0
9.	ĉ	×	-181.	17.	1.5	*	
10.	10	*	-41.	105.	1.5	x	, ?

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1000. M
BRG = 210. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	C00F X	IDINATES (1	{} Z	* * * *-	TOTAL + AMB (PPM!
1.	1	*	469.	180.	1.5	*	.0
2.	2	*	418.	~9.	1.5	*	.0
ŝ.	Ş	r	191.	-56.	1.5	×	.4
4.	4	ż	29,	-207.	- 1 g	Ż	3.3
5.	5	Ż	-34.	-175.	1.5	Ý	.0
€.	6	*	-277.	-255.	1.5	¥	.0
?.	n i	‡	-314.	-113.	1.5	*	. (:
8.	8	*	-251.	-66.	1.5	×	.0
Ģ,	9	*	-181.	17.	1.5	*	. 1
iO.	10	İ	-41.	105.	1.5	×	ıŝ

I. SITE VARIABLES

MIXH = 1000. M

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	X C001	RDINATES (1 Y	() Z	* * *	TOTAL + AMB (PPM)
1.		``	469.	180.	1.5	*	
2,	2	*	418	-9.	1,5	*	.0
÷.	3	Ý	191,	-55,	1.5	¥	, 0
4.	4	ź	29,	-207.	1.5	×	2.3
Ę.	į	Ż	-34,	-175	7.5	7.	.6
ĝ,	ก	ż	-277	-255.	1.5	r	.0
7.	•	¥	-314.	-1:3	1.5	¥	. (-
٤.	8	¥	-271	-99	1.6	x	- ^ - 5
5,	g	ĭ	-181,	,,	1,5	r	
	10	*	-41.	105.	1.5	ř.	1.0

I. SITE VASTABLES

0 = 1.1 M/S	CDAS = 4 (D)	VS = .0 CM/S	ATIN = 60. MINUTES	MIXE = 1000. M
			VAS = '6 bbk	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	* * *	C308 %	DINATES (1	K) Z	* *	TOTAL + AMB (PPM)
					X .	
1. 1	*	469.	180.		*	. 5
2. 2	×	418.	-9,		*	. 2
6 6	x	:9:.	-55,	1,5	¥	1.5
4, 4	x	29.	-207.	1.5	x	2.1
	*	-34.	-175.	:.5	*	, (·
2, 2	×	-277,	-255.	: .5	x	.0
5 6	×	-314.	-118.	1.5	×	.(
 	¥	-951	-63.		¥	.0
9. 9	x	-181.	15.	1.5	x	.0
10. 10	*	-41,	195.		x	1.3

I. SITE VARIABLES

y = 1.1 M/S	GBAS = (5)	78 =	.3 OM/8	ATIM = 86, MINUTES	MINE = 1981. M
BRC = 240. DEGREES	20 = 100. CM	117 E	T CKIS	WWB = '0 bbW	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C00F	DINATES (I	Y) Z	* * *	TOTAL + AMB (PPK)
1.	1	*	469.	180.	1.5	*	, 6
2.	2	*	418.	-9.	1.5	¥	. 3
3.	ů.	‡	191.	-55,	1.5	İ	1.9
4.	Ļ	*	29.	-207.	1.5	¥	2 :
5.	5	*	-34.	-175.	1.5	¥	. Ĉ
β.	6	*	-277.	-255.	1.5	¥	.0
7,	Ţ.	*	-214.	-::5.	1.6	¥	.(
3,	ŝ	*	-281.	-68,	1.5	X	
Ş.,	ç	ź	-18:.	14	:.:	*	. ^
10.	10	*	-41.	105.	1.5	ŧ	1.5

I. SITE VARIABLES

3 = 1.0 H/S	35AS = 4 (5)	VS = .0 0M/S	Wolk = 80% WINGIDS	MIXE = 1000. M
RPS = \$55, BPGRRPS	70 ± 108 CM	VE = .5 0M/8	AMB = .0 PPM .	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	* * *	C001	RDINATES (1 Y	Υ) Ζ	* *, * *-	TOTAL + AMB (PPM)
1. 1	ż.	469.	180.	1.5	1	.7
3 9	*	418.	-9.	5	x	.6
£, {	¥	191.	-55.	1.5	¥	1.7
4. 4	*	29.	-207.	1.8		2.0
€. €	*	-34,	-175.	1.5	*	.0
6.6	*	-2?7.	-255.	1.5	*	.0
7. 5	r	-314.	-113.	1.5	¥	.0
8. 8	ż	-251.	-68.	1.5	x	
g. g.	*	-181.	17.	1.5	×	.0
10. 10	r	-41,	105.	1.5	x	. 8

I. SITE VARIABLES

U = 1.0 M/S	GLAS = 4 (D)	VS = .J CM/S	ATIM = 60. MINUTES	MINE = 1000. N
ERG = 260. DEGREES	Z0 = 108. OM	VD = .0 OM/S	AMB = .0 PPM	

	*	COORDINATES (H)			* + AMB		
RECEPTOR	* *	λ	Y	Z	* *-	(PPK)	
1. 1	*	469.	180.	1.5	ŧ	. 7	
2. 2	İ	418.	-9.	1.5	*	, 5	
3. 3	¥	191.	-55.	1.5	*	ji.7	
4. 4	*	29.	-207.	1.5	*	2.:	
5. 5	*	-34.	-175.	1.5	*	.0	
6.6	*	-277.	-255.	1 5	¥	.0	
7. 7	¥	-314.	-113.	1.5	ž	.0	
8. 8	*	-251.	-88.	1.5	¥	.0	
9, 9	ż	-181.	17.	1,5	*	.0	
10. 10	¥	-41.	195.	1.5	Á	. :	

U = 1.0 M/S	CLAS = 4 (0)	VS = .0 0875	ATIM = 80. MINUTES	MINE = 1300. M
BRG = 270. DEGREES	Z0 = 108. CM	VI = .0 0M/8	WAE = 'C EBA	

III. RESEPTOR ECCATIONS AND MODEL RESULTS

	RECEPTOR	* *	0001 X	Idinates (1 Y	M: 2	x x	TATEL + AMB + (MPP)
1		·x	469.	180.	1.5	x	.3
2.	2	×	418.	-9.	:.5	*	.6
3,	:	×	191.	-55.	1,5	×	1.6
4.	1/4	*	29.	-207.	1.5	*	2.1
ξ.	E	*	-34.	-175.	1.5	×	. I
ŝ.	£	ż	-277.	-255.	1.5	x	10
7.	7	*	-314.	-113.	1.5	*	.0
ê,	8	¥	-251.	-68.	1.5	×	.5
Ģ,	9	*	-181.	17.	1.8	*	.0
10,	10	*	-41,	108.	1.5	*	, 1

I. SITE VARIABLES

U = 1.0 M/S	GDAS = 4 (D)	VS = .0 CM/8	ATIN = 60. MINUTES	MINE = 1000. N
RRG = 280. DEGREES	Z0 = 108. CM	VE = .0 CM/S	AMB = .C PPM	

	×				r	TOTAL
	×	200E	DINATES (Ä)	ĭ	- AMB
RECEPTOR	x	<u>Y</u>	y	~	x	:ppx '
					*-	
• •	ż	460.	180	1.7	¥	.3

2.	2 *	418.	-9,	1,5	*	, 8
3. 3			-55.	1.8	¥	1.7
4.		29.	-207.	1.5	*	2.2
£	*	-34.		1.5	*	.2
6. 1	6 *	-277.	-255.	1.5	*	.Û
7.	? *	-314.	-110.	1.5	*	. 0
8. 8	*	-25].	-36.	1.5	×	.0
9. 9) }	-181.	17.	1.5	*	.0
10.	10 *	-41.	105.	1.5	2.	.0

= 1,0 K/S	GLAS = 4 '	VS = .0 0M/S	ATIM = 80, MINUTES	MIXH = 1990. K
BRG = 290. DEGT	20 = 108. CM	VE = .0 CM/S	AME = .0 PPM	

TYPE RECOUNT CONTACTIONS AND MAGGED RESULTS

SECEPTOR .	; ; =	714.E	DIMATES (X) Z	* * *	TOTAL - AMB (PPM)
	*	489.	100.	1.5	*	
2 2	\$	1 16,		:.5	*	
3. 3	r	191.	-55.	1.5		1.7
4. 4	ż	29.	-205.	1.5	*	2.2
5 5	*	-34	175	1 5	±	.2
°, °	×	-255.	-255.	1,5	*	.0
	x	-314.	-118.	1.5	x	.0
3. 8	¥	-251.	-66.	1.5	*	.0
3. 3	Ż	-181.	17.	1.5	×	.0
10. 10	*	-41.	105.	:.8	x	.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 [D]	· VS = .0 0	M/S ATIM =	60. MINUTES	MIXH = 1901. M
PEG = SAE, DEGERES	20 = 108. CM	vp ± .(0	M/S AME =	(PPM	

	* *	0 005	DINATES (¥)	x x	TOTAL + AME
RECEPTOR	× -	X	Ž.	. # 	¥ T	(bbk)
	·*	469,	189.	: :	ý	.0
3. 3	×	418,	-3.	:.:	*	
	×	191.	~55,		±	: , à
4. 4	*	23.	-207.	1.5	Ŷ	2.2
ŧ. ŧ	x	-64.	-175.	1.5	x	. 2

ß,	6	*	-277.	-255.	1.5	*	.0
7	?	*	-314.	-113.	1.5	*	. (
8.	8	¥	-251.	-66.	1.5	*	.0
9,	g	‡	-181.	17.	i.5	*	. (i
10.	10	¥	-41.	105.	1.5	*	. 0

U = 1.0 H/S	CLAS = 4 (D)	VS = 18 CM/S	AGIM = 80% MINUTES	MIXE = 1000. X
BRG = 310. DEGREES				

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	x x	76,07 X	PETRATES ()	£	* * * x-	TOTAL AME
	:	ż	463.	:55:	1.5	ź	ıέ
2.	2	¥	418.	-3,	1.5	r	. 4
ζ,	ć	*	191.	-55.	: . 5	x	:.9
4.	4	*	23,	-207	1.8	x	3.3
5.	Ę	*	-34.	-175.	1.5	*	. 3
8.	Ê	*	-237.	-255.	1.5	ź	.0
σ,	<u>.</u>	*	-314.	-110.	1.5	*	, fr
8.	3	×	-251.	-86.	1.5	ķ	.0
9.	ş	*	-181.	17,	1.5	*	. €
10.	10	¥	-41.	105.	1,8	*	.0

I. SITE VARIABLES

U = 1.0 M/S	GLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1006. H
BRG = 320. DEGREES	ZC = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

RECEPTOR	* * *	ссоя Х	OTNATES (M) Ž	* *	TOTAL + AMB (PPM)
	*	489.	186.	1.0	*	.0
2, 2	ż	418.	-9.	1.5	Ŷ	.9
5. 6	r	1 C 1	-55,	1.5	*	1.8
4, 4	×	29,	-207.	1.5	¥	2.8
ξ, έ	¥	-54.	175.	: . !	ž.	. 2
8. 8	×	-277	-255.	:.:	¥	
# # 11 :	*	-3:4.	~::0.	:	r	f.
5. 8	x	-26	-9E.		x	
9. 9	×	-181.	· ·	1.1	*	6.

U = 1.0 M/S BRG = 330. DEGREES			ATIM = 60. MINUTES AMB = .0 PPM	MIXH = 1000, M
-----------------------------------	--	--	------------------------------------	----------------

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COOR X	DINATES (1 y	() Z	* * *	707A1 + AMB (PPM:
1.		x	483.	180.	: .:	×	
2.	2	*	418	-9.	1.5	*	
٤,	* 0	x	101	-55,	1.5	x	1.5
4	Ļ	x	25.	-207,	1.5	×	2.7
ξ.	£	ź	-34	-175.	1.5	X	. 5
2.	É	¥	-277	-255.	1.5	*	. 3
	ŗ	Ż	-314	-113	1.5	x	. 3
4	9	*	-251.	-66.	1.5	×	, 0
ý,	9	*	-181	1.5	1,8	*	.0
10,	19	*	-41,	:G5,	: 10	×	.0

I. SITE VARIABLES

U = 1.0 M/S	CGAS = 4 (D)	VS =	.0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. H
BRG = 34C. DEGREES	Z6 = 108. CK	VD =	.e cm/s	AME = '0 BbW	

	ESGEBAGE	* *	X 0003	DINATES (1	() Z	* * *	TOTAL + AMB (PPM)
		*	469.	180.	1.5	x	. (
2.	2	Ė	418.	- Ç .	1.5	*	,0
Ç.	:	x	191.	-55.	1.5	*	1.2
4.	4	¥	29,	-207.	1.8	x	5.8
ξ.	5	¥	-34.	-175.	1.5	*	.2
ŝ.	Ç.	¥	-277	255	1,5	Ż	
	7	, x	-314.	-115,	1.8	¥	٠.
8.	ż	*	-351.	-66.	1.5	x	
٥,	ģ.	x	-181.	11.	1.0	*	. (,
10.	* 6 * 8	¥	-41.	196.	1.7	×	

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 350. DEGREES				

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	; ;	COOF	DINATES (1 Y	() Z	* *	TOTAL + AMB (PPM)
					* -	
1.1	*	469.	180.		¥	.(
3. 3	*	418.	-9,	: .5	ž	.0
3. 8	*	191.	-85.	1.5	Ý	
4, 4	Ý	23.	-207.	:,;	¥	1.5
5, 5	X	-34	-175.	:	¥	1.7
3, 8	1	-277	-255.	1,5	x	
~ f	¥	314	-115	1,5	ż	.(
\$, 8	x	-251.	-66.		x	
9, 0	x	-181.	17.	1.5	¥	
10. 10	×	-41,	105.		r	.1.

I. • SITE VARIABLES

U = 1.0 M/S	CDAS = 4 (D)	VS = .0 OM/S	ATTM = 60. MINUTES	MIXH = 1000, M
	Z0 = 108. CM			

	RECEPTOR	* *	C00F X	DINATES (! Y	() E	* * *	CATOT GMA + (MQQ)
1.	1	*	469.	180.	1.5	x	.0
9	2	*	418.	- g ,	1.5	x	.0
3.	g	×	191.	-55	1.5	×	:.5
4.	4	x	29.	-207.	1,8	ż	3.4
÷ .	F. 0	×	-34.	-175.	1.5	*	2.6
ŝ.	E	*	-277.	-255.	1.5	*	()
7 ,	7	*	-314.	-113	1.5	*	.0
ŝ.	8	* *	-251.	-88.	1.5	x	.0
9.	g	*	-181.	17.	, . E	x	.(
:0,,		*	-41,	105.	1.5	¥	. 3

CALINES: CALIFORNIA LINE SOURCE DISPERSION HODEL - SEPTEMBER, 1979 VERSION

PAGE 1

JOB: 1275/DALE MABRY NO BUILD 2010

RUN: 2010 NO BUILD

II. LINK VARIABLES

LINK DESCRIPTION	*	LIN	K COORD	THATES (1	y <u>!</u>	ź	LINK LENGTH	LINK BRO	TYPE	YPH	EF	H	W
	*	ΧI	Y 1	λ2	Y2	×	(K;	(DEG)			(G/KI)	(K)	(K)
A. NW CLOVERSEAF SEGI	*	-41,	-32,	-126.	-18.			273.	λG	780.	2 6. 5	.0	3.7
B. NW CLOVERLEAP SEG2	¥	-126.	-18.	-122.	46.	¥	64.	\$,	AG	780.	58.5	Û.	5.7
C. NW CLOVERLEAT SEGS	¥	-122.	46.	-50.	58.	×	70.	80.	AG	780.	36.5	.0	3.7
D. NW CLOVERLEAP SEG4	*	-50.	58,	-19,	ξ.	r	ŝ£.	144.	63	780.	20.5	.0	5.7
E. SE GLOVERLEAF SEGI	ź	11.	-18.	84,	0.	r	₹.	₩,	A.G	0.0	(ê.t	.0	5.5
F. SE GLOVERLEAF SEG2	*	84.	5.1	12).	-38.	*	60.	160.	ÁĞ	1020.	36.5		5.7
G. SE GLOVERLEAP SEGO	r	130.	-38,	€2.	-Ç9.	Ŷ	9:.	228.	40	1633.	3.33	.(5.7
B. SE GLOVERLEAF SEG4	x	32.	-99.	2.	-20.	r	95.	213.	£3	1925.	38.E	, ĉ	3.7
I. 1275 WE SEGI	x	£30.	:37,	265.	122.	*	24€.	266.	\$.P	9009.	::	. (*	11.0
J. 1206 WB SEG2	x	285.	122,	150	g .	×	171	951.	F!,	3:15.	38.5	. 0	11.3
E. 1275 WE SEGS	Ż	120,	ŝî,	-41.	-32.	x	192.	239.	F.	8113.	36.5	. (11.0
L. 1215 WB SEG4	*	-4:	-32.	-229.	-155.	×	224.	227.	57	7333.	36.5	.0	11.0
M. 1298 WE SEGS	×	-229.	-165.	-305.	-204.	x	90,	237.	FL	8719.	36.5	, (11.0
N. 1275 EB SEGI	*	-299.	-218.	11	-18.	¥	368.	57.	71	8256.	16.5	Ü	11.9
0. 1275 EB SEG2	x	11.	-18.	198.	50.	x	140.	61.	P.	7335.	36.E	.0	11.0
P. 1275 EB SEG3	*	133.	50.	293.	101.	×	168.	70.	FL	7000	36.5	. J	11.0
G. 1275 EB SEG4	×	293.	101.	530.	110.	ż	293.	87.	PL	9003.	1.90	, (11.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 10. DEGREES	ZC = 108, CM	VD = .0 CM/S	AMB = .0 PPM	•

RECEPTOR	x x	000F	DIRATES ()	V.: 2	* *	TOTAL - ANS (FPM)
		/·			* _	(
* /	7	489.	190,	: . [*	. 0
6 9 #1 #	*	415.	-3.	: :	×	3.4
((*	191.	-55.	:	¥	3.0
4, 4	1	921	-101.	1.5	x	2.7
; ;	x	-34,	- 176.		r	8.5
ê. ê	ż	-277,	-255.	: . :	x	8.8
7. 7	x	-814.	-115.	:	x	. 0

8.	8	*	-251.	-66.	1.5	*	.0
Ģ,	ç	*	-181.	17.	1.5	¥	.0
10.	10	*	-41.	105.	1.5	*	.0

∜ =	1.0 M/S	GLAS = 4 (D)	VS =	.8 CH/S	ATIM = 60. MINUTES	MIXH = 1000, K
BRG =	20. DEGREES	Z0 = 108. CM	VD =	.e cm/s	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

BRATTHE (T	* *	COGRETNATES (V)			± x ÷	TOTAL + AME
RECEPTOR	÷ 	X 	:	Ζ	¥	(PPW)
1. 1	ź	489.	180.	1,8	×.	.0
2. 2	*	418.	-9,	1.5	×	9.3
ć. <i>ć</i>	*	101.	-55.	:	×	9
4, 4	x	29.	-207.	5	¥	2.5
5 . E	¥	-34,	-175.	1,5	*	3.6
6. 6	ź	-277,	-255.	1.5	×	6,9
7. î	*	-514.	-110.	1.0	x	.0
8. 8	*	-251.	-56.	1,5	ż	.0
ç, ç	*	-181.	17.	1.5	¥	. 0
10. 10	*	-41.	105.	1.5	Ż	.0

I. SITE VARIABLES

9 = 1.0 K/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 80. KINUTES	MINH = 1300. M
BRG = 36. DEGREES	ZC = 108. CM	VD = .0 CM/S	AME = .0 PPM	

RECEPTOR	; ; ;	X 2001	RDINATES (¥) Z	* * *	TOTAL + AMB (PPM)
	*	469.	.0.0	: .;	¥	.0
2. 2	¥	418.	-9	1.5	Ý	5.0
3. 3	x	121.	-55,	1.5	¥.	5.1
4. 4	x	29.	-207,		*	2.4
5. 5	¥	-34.	-176.	1.5	×	1.6
8. 6	x	-277,	-255.	1.5	¥	4 4
7. 7	*	-314.	- 101	1.8	¥	. (1
â. ŝ	x	-251,	-58.	1.5	x	Ĵ
§. §	¥	-181,	17	1,5	ż	đ
10. 10	Ý	-4.,	175	1.5	Ì	. 9

IJ =	1.0 M/S	GLAS = 4 (D)	VS =	.0 CH/S	ATIM = 60. MINUTES	MIXE = 1000. M
BRG =	40. DEGREES	ZO = 108. CM	VD =	.0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECE	EPTOR	* *	coor X	DINATES (1	<u>, </u>	* *	TOTAL T AME (PPM)
1. 1			469,	165.		* - * -	.(
2. 2		ż	418.	-9.	1.5	×	1.9
5. 5		*	191.	-55,	1.5	Ź	3.2
4. 4		×	29.	-207.		*	2.2
8. 8		Ż	-34.	-175.	1.5	×	3.4
6. 8		Ý	-2"7,	-255.	1.5	x	7.8
7. ?		×	-3.4	-110.	1.5	¥	ļſ
5. S		Y	-251,	-66.	:.5	x	æ
9. 9		*	-181.	17.	5	*	.0
10. 10		*	-41.	105.	1.5	*	.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	HIXH = 1600. H
BRG = 50. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	* * *	C001 X	RDINATES (¥ ; Z	* * *	TOTAL + AMB (PPM)
1. 1	r	469.	186.	1.5	*	Ç
2. 2	*	418.	-9,	1.5	*	7
5. 5	*	191,	-55.	1.5	¥	2.0
4. 4	×	29.	-207.	1.5	¥	1 ?
8. 5	*	-34,	-175.	1.5	×	2.7
6. ŝ	¥	-277.	-255.	1.5	×,	5.5
7. 7	*	-314.	-113.	1.5	¥	. 2
8.8	*	-281.	-68.	1.5	×	
9. 9	*	-181,	17.	1.5	x	
10, 10	ż	-4:	195.	1.5	Ŕ	.3

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND HODEL RESULTS

	RECEPTOR	* * *	COOR X	DINATES (E	4) Z	* * *	TOTAL + AMB (PPM)
1.	1	*	469.	180.	1.5	*	.0
2.	2	x	418.	-9.	1.5	*	1.
3.	2	×	191.	-55.	1.5	*	2.1
4,	4	¥	29.	-207.	1.5	*	, 7
5.	\$	*	-34.	-175.	1.5	×	1.6
6.	6	×	-277.	-255.	1.5	*	3.€
7.	#	*	-514.	-113.	1.5	¥	1.9
8.	8	x	-251,	-6ê.	1.5	x	1.1
g.	g	×	-181.		1.5	*	.4
10.	10	ż	4.,	108.	1.5	ķ	.9

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		×	COORDINATES (M)			*	TOTAL + AMB
	RECEPTOR	¥	X	Ÿ	Z	ż .	(PPK)
1.		*	469.	180.	1.5	*	.0
2.	2	¥	418.	~9.		¥	.0
ş.,	9	*	191.	-55,	1.5	*	3.
Ł,	į	x	23.	-287.	1.5	¥	. 2
٤.	ŧ	İ	-34.	-175.		x	.5
6.	6	*	-277.	-255.	1,5	¥	1.1
1.	7	¥	-314.	-113.	1.5	*	4.9
8.	8	×	-251.	-66.	1.5	ķ	4.4
9,	9	x	-181.	17.	1.6	×	2.2
10.	10	×	-41.	105.	1.5	*	, 4

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		#	4 00	nru(mpo //	ur l	*	TOTAL
	B D Q D D M A D	*		DINATES (•	*	+ AMB
	RECEPTOR	*	χ	Y	2 	* *-	(PPH)
1.	1	*	469.	180.	1.8	*	.0
2.	2	*	418.	-9.	1.5	ķ	.0
3.	3	*	191.	-55.	1.5	×	. 1
4.	4	x	23.	-207.	1.5	‡	.0
5.	ţ,	*	-34.	-175.	1.5	*	.0
€.	5	*	-277.	-255.	1.5	*	. 0
7.	7	*	-314.	-113.	1.5	*	5.5
8.	§	*	-251.	-66.	1.5	¥	5.6
9.	9	*	-181.	17.	1.5	*	4.5
10.	10	¥	-41.	105.	1.5	ż	2.2

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 90. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND HODEL RESULTS

	RECEPTOR	* * 	C00F X	DINATES (1	{ } Z	* * * *-	TOTAL + AMB (PPM)
1.	1	*	469.	180.	1.5	*	.0
2.	2	*	418.	-9,	1.5	*	.0
3.	9	*	191.	-55.	1.5	*	.0
4	4	*	29.	-207.	1.5	*	.0
ξ.	8	ż	-34.	-175.	1.5	¥	.0
6.	ô	Ý	-2??,	-255.	1.5	*	.0
7	7	ź.	-314.	-113.	1.5	×	4.4
3.	8	*	-251.	-66.	1.5	*	4.8
9	g	*	-181.	17.	1.5	*	5.0
.0	10	*	-41,	105.	1.5	¥	4.3

I. SITE VARIABLES

U = 1.0 M/S	GDAS = 4 (D)	VS = .0 C	= MICA 3\H	ec. Hinutes	WIXE =	1000. 8
BRG = 100. DEGREES	Z0 = 108. CM	VD = .0 0	4/S AMB =	10 BBK		

	RECEPTOR	* * *	COOF	DINATES (I	() Z	* * *	TOTAL + AMB (PPM)
1.	1	*	469.	180.	1.5	*	. 1
2.	2	*	418.	-9,	1.5	*	.0
3.	3	*	191.	-55,	1.5	*	.0
4.	4	*	29.	-207.	1.5	*	.0
E.	5	*	-34.	-175,	1.5	*	.0
6.	6	*	-277.	-255	1.5	*	.0
7.	7	‡	-314.	-113.	1.5	*	4.2
8.	8	*	-251.	-66.	1.5	×	4.0
g,	g	į.	-181.	17.	1.5	¥	4.0
10.	10	*	-41.	105.	1.5	×	4.4

5 = 1.0 M/S	OLAS = 4 (D)	VS = .0 CM/S	ATEM = 80. MINUTES	MIXE = 1000. 8
	Z0 = 108. CK			

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C00R X	DINATES (N	() Z	* * *	(Ndd)
1.	1	*	469.	180.	1.5	*	. 5
2.	2	*	418.	-9.	1.5	*	0
3.	3	*	191.	-55.	1.5	*	.0
ź.	4	*	29.	-207.	1.5	¥	.0
ξ.	£	*	-34.	-175.	1.5	*	÷
Ĝ,	ĉ	*	-277.	-255.	1.5	x	.0
9.	7	¥	-314.	-113.	1.5	*	4.0
8.	8	*	-251.	-66.	1.5	*	3.7
ç	9	*	-181.	17.	1.5	¥	3.8
10.	19	*	-41.	105.		*	3.6

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIN = 60. MINUTES	MIXE = 1000. X
BRG = 120. DEGREES	Z0 = 108. CM	VE = .C CM/S	AME = .0 PPM	

	×				İ	TOTAL
	*	000	ORDINATES	(X)	x	- AMI
PROPERTOR	*	Y	v	7.	*	(ppv)

		*				*-	
1.	1	*	469.	180.	1.5	*	1.6
2.	2	*	418.	-9.	1.5	*	.0
3.	3	*	191.	-55.	1.5	*	. 0
4.	*	*	29.	-207.	1.5	*	.0
5.	5	*	-34.	-175.	1.5	¥	.0
6.	6	*	-277.	-255	1.5	*	.0
7.	7	*	-314.	-113.	1.5	*	4.0
8.	8	*	-251.	-66.	1.5	*	3.6
9.	9	*	-181.	17.	1.5	*	3.5
10.	10	*	-41.	105.	1.5	¥	3.1

U = 1,0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	HIXH = 1000. K
	ZO = 108, CM			

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C00F	DINATES (1 Y	() 2	* * *	TOTAL + AMB (Mqq)
1.	1	*	469.	180.	1.5	*	3.2
2.	2	¥	418.	-9.	1.5	*	.0
3.	9	*	191.	-55.	1.5	*	. 0
4.	4	*	29.	-207.	1.5	*	. 0
5.	Ę	*	-34.	-175.	1.5	*	.0
6.	6	*	-277.	-255.	1.5	*	.0
7.	7	j.	-314.	-113,	1.5	×	4.1
8.	8	*	-251.	-66.	1.5	*	3.6
g,	9	±	-181.	17.	1.5	*	3.2
10.	10	*	-41.	105.	1.5	*	5.1

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1000. M
ppc - 1/6 hpcpppc	70 ± 108 CM	VE = 6 CM/S	AMB = .C PPM	

		*	COOR	DINATES (M)		TOTAL
	RECEPTOR		χ	Y 	Z	x	(PPK)
	i	ż	469.	18(.	1.5	į	4.7
2.	2	Ż	418.	-3.	5	ķ	.0
ĝ,	(ż	191.	-55.	1.5	*	.0

4.	4	*	29.	-207.	1.5	*	.0
£.,	5	*	-34,	-175.	1.5	*	.0
8.	6	*	-277.	-255.	1.5	*	. 0
7.	7	*	-314	-113.	1.5	*	4.0
8.	8	*	-251.	-66.	1.5	*	3.5
9.	9	*	-181.	17.	1.5	*	2.9
10.	10	ż	~41.	105.	1.5	¥	3.1

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CH/S	ATIM = 60. MINUTES	MIXH = 1000. H
BRG = 150. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AME = G PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		*	2005	¥; :			
	proprior	×	Σ	Ÿ.	2		[SbN]
		*	489,	186.	1.5	x x	5.5
2.	2	¥	418.	-9,	1,5	¥	. ()
ů,	3	×	191.	-55.	1.5	¥	
4.	<u> </u>	*	20.	-207.	1.5	ķ	.0
ξ,	£	*	-34.	-175.	1.5	*	.0
ŝ.	g	*	-277.	-255.	1.5	*	.0
7.	? !	*	-314.	-110.	1.5	x	5.9
ŝ.	8	*	-251.	-ô6.	5	¥	5.6
G.	9	x	-181,		1.5	Ŷ	2.9
10.	10	*	-41.	105.	1.5	*	3.3

I. SITE VARIABLES

U = 1.3 M/S	GLAS = 4 (3)	VS =	.G CM/S	ATIM = 80. MINUTES	MINE = 1000. M
ERG = 160. DEGREES	Z0 = 103. CM	VI =	.e cm/s	AME = .0 PPM	

	RECEPTOR	* * *	CCCR I	IDINATES (1 Y	y: Z	* * * *-	TOTAL • AMB (PPM)
	:	ż	488,	197	1.5	r	€.6
2.	2	*	418.	-ŷ.	. 5	ž	. 3
4.	2	*	191.	-55,	1.5	*	# 1 s
4.	5	t	29.	-207.	: :	x	, ,
š,		x	-54.	-175.	1.5	*	3
ĉ.	ç	×	-277	-285.	1.5	x	.(
٠.	# 1	*	-314.	-110.	1.5	¥	5.5

8.	8	*	-251.	-66.	1.5	*	3,7
g,	9	*	-181.	17.	1.5	*	2.9
10.	10	*	-41.	105.	1.5	*	3.3

U = 1.0 M/S	CLAS = 4 (D)	VS = .0	CM/S ATIM =	60. MINUTES	MIXH =	1006. M
BRG = 170. DEGREES	Z0 = 108. CM	VD = .0 (CM/8 AME =	.0 PPM		

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	0003 X	IDINATES ()	() Z	* * * *-	TOTAL + AMB (PPM:
1.		*	469.	186.	1.6	¥	5.8
<u>ئ</u> د د	2	x	418,	-9,	1.5	ķ	.9
9.	ŝ	x	191.	-85,	1.5	*	, (
4,	Ļ	x	29.	-207.	1.5	*	.0
5.	E .	*	-34,	-175.	1.5	¥	.0
6.	ô	*	-277.	-255.	1,5	*	.0
î.	?	*	-314.	-115.	1.5	×	2.5
ŝ.	8	*	-251,	-66.	1.5	*	3.7
9,	9	*	-181.		1.5	¥	2.9
10.	10	*	-41.	105.	1.5	Ż	3.4

I. SITE VARIABLES

U = 1.0 M/S	GLAS = 4 (B)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 180. DEGREES	ZO = 108. CK	VD = .0 CM/S	AME = .0 PPM	

	RECEPTOR	* * *	3008 X	DIRATES ()	y : Z	* * *	TOTAL + AND (PPM)
1.		*	469.	180.	1.5	x	5.8
2.	ž	¥	418.	-9,	1.5	¥	.6
÷.	3	*	191.	-55.	1.5	x	.0
4.	4	×	29.	-207.	1.5	ŧ	.0
; .	ŧ	*	-34,	-175	1.5	¥	, e
8.	ô	¥	-277.	-255,	:.5	İ	, :
7.	7	ż	-314.	-113.	1.5	¥	1.2
ŝ	8	Ý	-251.	96.	: 5	*	3.9
Ģ,	ç	x	-181.	17.	1.5	Ì	3.0
10.	10	×	-41,	105.	1.5	¥	5,0

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIN = 60. MINUTES	KIXH = 1000. N
BRG = 190. DEGREES	ZO = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COORDINATES (N)			* *	TOTAL + AMB
	RESURTION		â			*-	11:11
1.	1	*	469.	180.	1.5	*	5.7
2.	2	*	418.	-9.	1.5	ŧ	.0
3.	ć	*	191.	-55.	1.5	*	, É
4.	4	7	36.	-207.	1.5	İ	, Č
Ş.,	Ę	¥	-34,	-175.	1.8	¥	. (-
ŝ.	€	¥	-977	-265.	:	×	, <u>2</u>
7.	7	x	-214.	-115.	1.5	*	
3.	8	x	-351,	-âb,	1.8	*	2.4
ŷ,	Ģ	×	-181.	17.	1.5	*	3.1
10.	19	*	-41.	105.	1.5	*	2.5

I. SITE VARIABLES

U = 1.0 M/S	CDAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1000. M
RRG = 200, DRGRRRS	20 = 108, CM	VD = .0 CM/S	AMP : .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	0001 X	IDINATES (I	%) Z	* * * *-	TOTAL + AMB (PPM)
1.	1	×	463.	186.	1.5	×	5,9
2	2	*	418.	-3.	1.5	×	. ?
ç,	S	*	191.	-55.	1.5	¥	·ť
4	4	x	22,	-207.	1.5	¥	. 🤉
5.	£	¥	-34.	-175.	1.5	¥	.0
6.	ê	*	-8 mg	-255.	.,5	¥	
i.	7 1	x	-314.	-113.	1.5	*	0
8.	8	x	-251.	~86.	1 5	×	2.:
3.	ğ	*	-131,	4.6	5	¥	2.8
10.	• 1	y	-41.	100.	1.5	ź	3.2

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COOR X	DINATES (1	() Z	* * *	TOTAL + AMB (PPH)
	!	*	469.	180.	1.5	¥	€.0
2.	2	2	418.	-9.	1.5	Ż	. 9
3.	\$ d	ż	191.	-55.	1.5	ź	, O
4.	į.	×	29.	-207.	1.5	x	.0
ξ.	,	*	-34,	-175.	1.5	*	. Ĉ
Ê,	6	ź	49.77	-255.	1.5	¥	.0
	•	*	-314.	-113.	1.5	×	.0
8	5	¥	-251,	-98.	1.5		, ŝ
ş.	÷	x	-181,	1 **	1.5	x	1.6
11.	26	x	-41,	105.	1.5	×	6.8

I. SITE TARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

!	RECEPTOR	* *	COGRDI X	INATES (M) Y	7	* * *	CODAL - AMB
		x	469.	180.	1.5	*	6.3
2.	- <u>1</u>	×	416.	-9.	1.5	*	.0
	- (¥	1911	-55.	1.5	ź	.0
	!	r	20.	-207.	1.5	¥	, ?
	•		-34.	-175.	1.5	×	. [
	a B	χ̈́	-200	-255	1.5	*	٠,٥
	ŗ	ž	-314,	-113.	1.1	×	.6
	•	×	-251.	-66.	1.5	Ż	, :
	Š	x	-181,	7	1.5	¥	. 5
	• • 6	x	-41,	108.	1.5	x	2,4

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		*				*	TOTAL
		*	COOR	DINATES (1	(1)	ŧ	+ AMB
	RECEPTOR	*	X	Y	Z	*	(PPM)
1.	1	*	469.	180.	1,5	*	7.4
2.	2	*	418.	-9	1.5	¥	.0
3.	3	¥	191.	-55.	1.5	ź	.0
4.	4	¥	29.	-207.	1.5	*	.0
Ę.	5	¥	-34.	-175.	1.5	×	.0
6.	6	*	-277.	-255,	1,5	*	.0
7.	7	*	-214.	-115.	1.5	ĸ	.0
8.	9	*	-251.	-66.	1.5	*	. 9
ĝ.	ç	±	-181.	17.	1.5	*	.0
10.	10	r	-41,	105.	1.5	ż	1.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIN = 60. MINUTES		MIXE = 1000. M
BRG = 246. DEGREES	Z6 = 108. CK	VD = .0 CM/S	AME = .0 PPM	•	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * 	C00R X	DINATES (I	() Z	* * *	TOTAL + AMB (PPM)
1.	:	*	469.	180.	1.5	¥	9.2
2.	2	*	418.	-9,	1.5	×	.:
٠.	3	*	191.	-55.	1.5	×	ιĉ
4.	Ļ	×	29.	-207.	1.5	¥	, Ą
ξ,	5	*	-34.	-175.	1.5	r	. 6
8.	6	*	-277.	-255.	1.5	Ż	. Û
7	n .	*	-314.	-113.	1.5	*	.0
έ.	8	x	-251.	-66.	1,5	×	. 0
Ġ.	g	*	-181.	17.	1.5	ż	. Û
10.	10	*	-41,	105.	1.5	¥	, -

I. SITE VARIABLES

0 = 1.0 M/S	OLAS = 4 (D)	78 = .0 CM/8	ATIN = 80. MINUTES	MIXE = 1800, M
BRG = 28(. PRGRERS	30 = 108. GM	VI = .5 CM/S	AMB = .0 PPM	

RECEPTOR	* X	ORDINATES (M	Z	*	TOTAL (PPK)				
1. 1 2. 2 3. 3 4. 4 5. 6 6. 6 7. 7	* 469. * 418. * 191. * 29. * -34. * -277. * -314.	186. -9. -55. -207. -175. -255.	1.5 1.5 1.5 1.5	* * * * * * *	8.6 .8 2.0 .0 .5				
9. 9 0. 10	* -181. * -41.	-66. 17. 105.	\$ 5 E	*	.0				
I. SITE VARIABLES									
									- 100
U = 1.0 M/8 BRG = 200. DEGREES III. RECEPTOR LOCATI	Zf = 108	. CX	VS = VE =	.0	CM/S	ATIM = AME =	60. MINUTES .e pom	KIX3 :	- 100
BRG = 250. DEGREES	Zf = 108 TONS AND MODEL * COO	. CY RESULTS . RDINATES (M)	V0 = }	* '	SYMS TOTAL AMB (MM9)	ATIM = AME =	63. MINUTES .e PPM	KIXS :	- 100
RG = 280. DEGREES III. RECEPTOR RECEPTOR . 1 . 2 . 3 . 4 . 5	# COO * X * 418. * 29. * -34.	RESULTS RDINATES (M) Y 180. -9. -55. -207. -175.	V0 = 1.5 1.5 1.5	* * * * * * * * * * *	TOTAL + AMB (PPM) 	ATIM = AME =	63. MINUTES .e PPM	KIX3 :	- 100
	# COO # X # 469. * 469. * 418. * 29. * -34. * -277. * -314. * -251.	RESULTS RESULTS RDINATES (M) Y 180. -9. -55. -207. -176. -256. -113. -66. 17.	V0 = 2	* * * * * * * * * * * * * * * * * * * *	TOTAL + AMB (PPM)	ATIM = AME =	60. MINUTES .0 PPM	KIX3 :	00
RECEPTOR . I . 2 . 3 . 4 . 5 . 6 . 7	* COO * X * 469. * 418. * 191. * 29. * -34. * -277. * -314. * -251. * -161.	RESULTS RESULTS RDINATES (M) Y 180. -9. -55. -207. -176. -256. -113. -66. 17.	V0 = 1.5 1.5 1.5 1.5 1.5 1.5	* * * * * * * * * * * * * * * * * * * *	TOTAL + AMB (PPM)	ATYM = AME =	60. MINUTES .6 PDM	KIXS :	= 100

* TOTAL * COORDINATES (M. * AMS RECEPTOR * X Y Z * (PPM'

		- \$				*-	
1.	1	*	469.	180.	1.5	*	9,
2.	2	*	418.	-9.	1.5	*	2.4
3.	3	*	191.	-55,	1.5	*	3.6
4.		*	29.	-207.	1.5	*	1.6
5.		*	-34.	-175.	1.5	¥	3.1
6.	ŝ	*	-277.	-255.	1.5	*	.0
7.	7	*	-314.	-113.	1.5	*	.0
8.	8	*	-251.	-66.	1.5	*	.0
g.	g	*	-181.	17.	1.5	*	.0
10,	10	*	-41.	105.	1.5	*	.0

U = 1.0 M/S	CDAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	M .0001 = EXIM
BRG = 280, DEGREES	Z0 = 108. CM	V0 = .0 CM/S	AME =C PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		* *	C00E	DINATES (1	ý)	*	TOTAL + AMB
	RECEPTOR	*	X	Ÿ	2	*	(PPR)
:		*	469.	18G.	1.5	*	.û
2.	2	±	418.	-9,	1.5		2.6
ģ.	ç	*	191.	-55.	1.5	*	3, ?
4,	4	*	29.	-207.	1.5	*	2.4
5.	Ę	ż	-34.	-175.	1.5	*	3 4
€.	ő	*	-277.	-255,	1.5	ķ	. 0
7.	ŗ	*	-314.	-110.	1.5	*	.0
ŝ.	8	ż	-251.	-96.	1.5	×	.0
Ĝ.	g	¥	-181.	17.	1.5	*	.0
15.	:6	*	-41,	108.	1.5	¥	.0

1. SITE VARIABLES

0 = 1.0 M/S	GDAS = 4 (5)	VS = .0 CM/S	ATIM = 60. MINUTES	MINE = 1000. Y
BRG = 190. DEGREES	20 = 108. CM	VP = .0 CM/S	AME = '0 bbk	

	RECEPTOR	ż z		DINATES () Y	<u>y</u> : : Z	x	007A1 + AM8 (PPM)
2.	2	x X X	469. 418. 191.	:60. -9. -68.	•	*	.6 2.8 5.5

4.	4	*	29.	-207.	1.5	*	2.4
5.	5	*	-34.	-175.	1.5	*	3.3
6.	6	*	-277.	-255.	1.5	*	.0
7.	7	*	-314.	-113.	1.5	*	.0
8.	8	*	-251.	-68.	1.5	¥	.0
9,	9	*	-181.	17.	1.5	*	.0
10.	10	*	-41,	105.	1.5	*	. 0

U = 1.0 H/S	CLAS = 4 (D)	8/80 C, = 8V	ATIM = 60. MINUTES	MIXE = 1600. K
BRG = 300. DEGREES	20 = 108. CM	VD = .0 CM/S	AMB = .C PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	000R X	DINATES ()	1)	* * *	TATAL - AMB - MMG9)
1.	·	*	469.	180.	1.5	¥	,(
2.	2	*	418.	-9,	1.5	*	2.8
3.	4	*	191.	-55.	1.5	*	3.2
<u> </u>	4	x	29.	-207.	1.8	*	2.3
5.	£	*	-34.	-175.	1.5	*	3.2
8.	ŝ	*	-277.	-255.	1.5	*	.0
7.	7	*	-314.	-110.	1.5	ź	.0
8.	8	Ý	-251.	-88.	1.5	×	,0
9.	ĉ	*	-181.	17.	1.5	*	.0
10.	10	*	-41,	105.	1.5	*	. 0

I. SITE VARIABLES

U = 1.6 M/S	CDAS = 4 (D)	VS = .0.0M/8	ATIM = 60. MINUTES	MIXE = 1000. M
BRG = 310. DEGREES	I0 = 109. CM	VD = .0 CM/S	AMB = .0 PPM	

	RECEPTOR	x * *	000F X	DINATES () Y	() Z	* * *	TOTAL - AMB (PPM)
1.	·	*	469,	186.	1,{	*	.0
ž.	2	x	418.	-9.	1.5	¥	3.1
÷.	2	¥	191,	~5ē,	1.5	¥	2.9
4,	4	Ż	23,	-200.	: .5	X	2.2
Γ,	ŧ.	Ý	-34,	-155.	1.5	x	3,1
ĉ.	6	x	-277,	-255.	1.5	x	. 3
7.	:	×	-314.	-::::.	:	¥	.(

8.	8	*	-251.	-66.	1.5	*	.0
9.	9	*	-181.	17.	1.5	*	.0
10.	10	*	-41.	105.	1.5	*	.0

U = 1.0 M/S	SLAS = 4 (D)	VS = .0 (cm/S ATIM =	60. MINUTES	MIXH =	1000. ¥
BRG = 320. DEGREES	ZO = 108. CM	VD = .0 (CR/S AMB =	.C PPM		

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	x x x	0008 X	DINATES ()	() Z	* * *	TOTAL + AMB (MM4)
71 63 40 47 h0 60 61 6		* * * * * *	469. 418. 191. 20. -34. -314.	180. -55. -207. -175. -255.		* * * * * *	0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
\$. 9. 10.	8 9 10	ž x ž	-251. -161. -41.	-68. 17. 105.	1.5 1.5 1.5	* * *	.0 .0 .0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS =	.0 CM/S	ATIN = 80. MINUTES	MIZE = 1000, M
BEG = 330. DEGREES	ZC = 108. CM	VD =	.0 CH/S	AMB = .0 PPK	

RECEPTOR	* * *	C003 X	CINATES (1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * *	TOTAL + AMB (PPM)
*	*	489.	186.	1,5	7	Û
2. 2	×	418.	-9,	1.5	¥	5.5
8, 8	¥	191.	- 85,	1.5	¥	5.0
4 4	×	22.	-207.	1.5	¥	2.5
6. 5	ż	-54,	-178.	1.5	x	3.2
ð. E	x	- <u>2</u> 77,	-255,	1.5	X	61.
7. 7	¥	-314.	-113.	1.8	¥	. 0
5, 8	x	-251,	-66.	: . 5	Ż	
9, 9	x	- 18.	- 5	1.5	*	.0
10. 10	*	-41,	105.	1.5	¥	.6

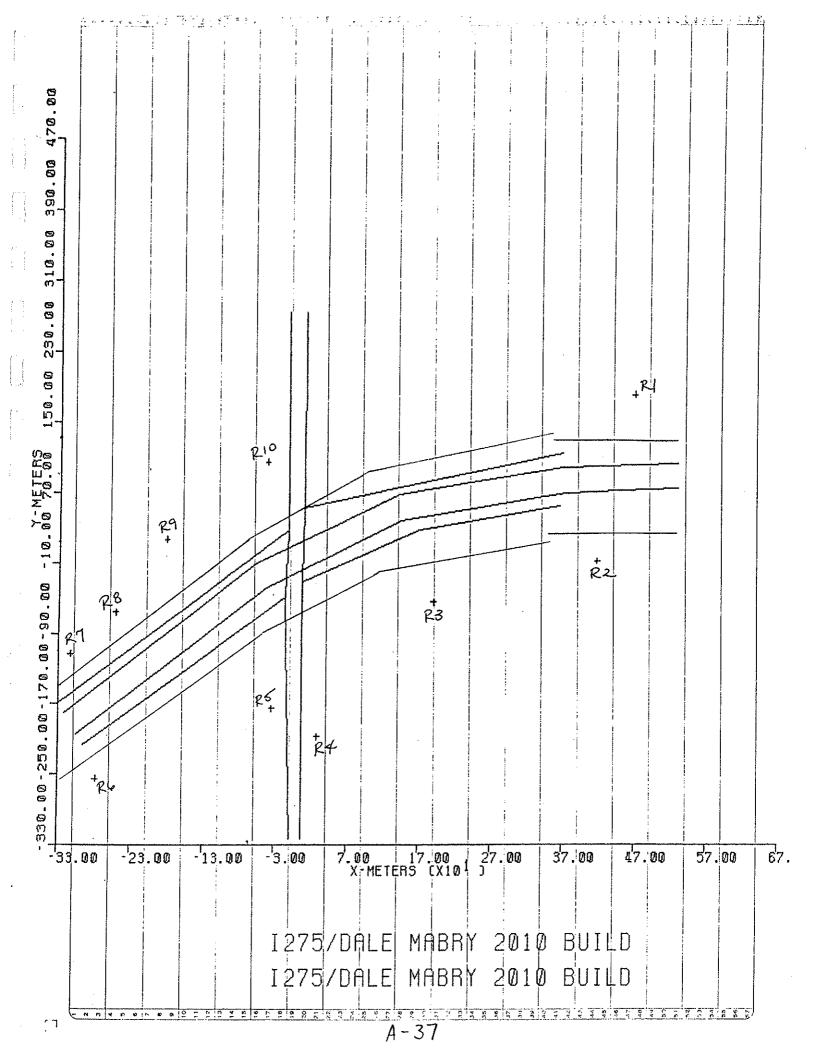
U = 1.0 M/S	CLAS = 4 (D)	YS = .0 CM/S	ATIM = 60. KINUTES	MIXH = 1000. M
BRG = 340. DEGREBS	Z0 = 108. CM	VD = .0 CH/S	AME = .0 PPK	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	* *	COOR	COORDINATES (H)			TOTAL + AMB
RECEPTOR	*	χ	Y	e 5	*	(bok)
1. 1	*	469.	180.	1.5	*	. (
2. 2	×	418.	-9,	1.7	x	3.4
7. 5	*	191,	-55.	1.5	¥	2.5
4. 4	x	22.	-297.	1.5	x	2.4
5. 6	x	-34,	-175	1.5	x	614
§. 6	*	-277.	-255.	1,5	*	4.5
7. 7	x	-314.	-113.	1,5	x	. (
8. 8	Ý	-251,	-66.		x	f.
9. 9	*	-181.	17.	1.5	×	C
10. 10	×	-41.	105.	1.5	¥	ĵ

1. SITE VARIABLES

9 = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 350. DEGREES				


III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	0009 X	DINATES (1	{	x * *	TATOTAL EMA + (MQQ)
•		×	469.	180.	1.5	¥	,(
9	2	ź	4:8.	-9,	1.5	x	3.4
6	6	*	191.	-5E.	1.5	ķ	3.0
4	<u> </u>	r	29.	-207,	5	×	2.5
ţ,	5	*	-34.	-175.	1.5	x	0.2
ő.	Ê	¥	-277.	-255.	1.5	*	8.9
7,	7	*	-314.	-113.	1.5	*	.0
ō.	£	¥	-251.	-68,	1.5	*	.0
ŝ.	9	x	-181.	17.	:	¥	.(
10.	10	*	-41,	105.	:.:	*	.0

I. SITE VARIABLES

BRG = 360. DEGREES

		* *	COORDINATES (H)			*	TOTAL • AMB	
	RECEPTOR	*	Х	X Y		*	(PPK)	
1.		*	469.	180.	1.5	*	.0	
2.	2	*	418.	-9.	1.5	Ř	3.4	
3.	3	*	191.	-55.	1.5	*	2.8	
4.	4	*	29.	-207.	1.5	×	2.6	
ξ.	5	ż	-34.	-175.	1.5	×	3.4	
ő.	£	*	-277.	-255.	1.5	ż	ĉ. 2	
7.	9	*	-314	-115.	:.5	r	, 0	
8.	8	r	-251,	-66.	1.5	x	.6	
g,	9	*	-181.	17,	:,5	ż	ŗ	
10.	10	*	-41,	105.	1.5	*	Ç	

CALINES: CALIFORNIA LINE SOURCE DISPERSION MODEL - SEPTEMBER, 1979 VERSION

PAGE :

JOB: 1275/DALE MABRY BUILD 2010

RUN: 2010 BUILD

II. LINK VARIABLES

LINA DESCRIPTION	*	LIN	K COORD	INATES ()	4)	* LINE LENGTH	LINE BRG	TYPE	ypu	27	H	¥
	x	X:	¥1	X2		* (#)	(DEG)			(G/MI)	[K.	(8)
A. MABRY SE DELAY	* *	-10	274	-12.	27,	¥ 2/5	181.	4G	8159.	42.4	.0	18,8
B. MABRY SE MIDSEG	*	-12.	9.0	-17.	-49,		153.	AG	2915.	42.4	.3	21.9
C. MABRY SE DEPART	*	-17	-49	-9.	-328,		178.	AG	2382.	20.9	Ų	26.5
I. MABRY NE FREE	×	٤,	400	÷.	-259.	x 94.	170	h.วิ	2002	21.9		5.1
E. MABRY NE DELAY	ż	٤.	-259.	ê.	-32,	¥ 327.	200	kĵ.	5062.	41.4		
F. MADRY NO MIDSEG	*	9.,	-32.		£2.	× 84.	<u>1</u> .	23	1815	42.1		11.2
G. MARRY NO DEPART	*	• • •	£2.	12.	274.			25	ili.	:		14.4
E. WE OFF SAMP	ż	* * 1	E2,	682	114.			ă.)		45.4	1.2	
I. WE ON HAMP	×	-12.	27.	-02Ş.	-188.		2637	ÁĞ	:::::::::::::::::::::::::::::::::::::::	11.3	ĺ.	•
J. EB OFF BAMP	x	-10	-15,	#1314	-216.		239.	į,	131.	[2.0	1.	3.3
N. ES ON RAME SETT	3	:.	-02.	:51.	27.		7.	43	:818	13.3	, ſ	20.1
I, EB DY RAMP SEGS	7		37.	166.	£3.		32.	AG	6 3.	12.2	. (-	23.7
8. 1216 WE MAIN SEGI	x	530.	102.		21.		268.		5212.	3.1	- T - E	
S. 1215 WE MAIN SEG2	×	370.	·:.	142,	97.		232.	?1	5212	3,5	1,5	
0. 1275 WB 11 SEG0	¥	142.	€5.	∽5€.	-11,		249.	F.1	1212.	2.5	ī,ĝ	1
P. 127E MAIN SEG4	×	-56.	-11,	-322.	-18C.		257.	? <u>`</u> .	[212.	3.7	1.6	17.1
Q. 1278 EE MAIN SEGI	¥	-908.	-204.	-4 ú.	-ôć.		56.	Fi.	55.5	4.5	7.6	
R. 1275 BB MAIN SEG2	x	-42.	-38.	145.	58,		36.	27	8212.	3.7	` , 5	
S. 1278 BE MAIN SEGS	x	н.	66.	275.	69.		82,	FL	5212.	3.7	1.5	
T. 1275 BB MAIN SZG41	*	\$7 5 .	63,	530.	70.	* 156.	38.	Fb	5312.	9.7	7.6	* * * * *

I. SITE VARIABLES

0 = 1,0 M/S	CLAS = 4 (0)	VS = .0 CM/S	ATIE = 80. MINUTES	VIVE = IIIA, H
ard = 10. Degraps	20 = 108. CM	VP = 16 CM/S	AME = .0 FPM	

		* x		OCORDINATES (W)			TATE:
	RECEPTOR	*	X 	Y	2	* x-	[PPM:
:.		x	468.	:50.	: ;	;	.(
9.	C .	*	418.	- j.	1.0	¥	. 7
9	<i>(</i> -	x	191,	-50,	1,5	Ż	: 5
:	1	×	29.	-207,		ķ	:,5
£	-	у	-34.	-175.	: . :	3	4.1
3	ĝ	*	- 277	-258,	1.5	1	1.5
	÷	*	-314.			Ŷ	• •

8.	8	*	-251.	-66.	1.5	¥	.0
9.	g	*	-181.	17.	1.5	*	. 0
10.	10	*	-41.	105.	1.5	*	2.0

U = 1.0 M/S	CLAS = 4 (0)	VS = .0 CM/E	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 20. DEGREES	ZC = 108. CM	AF = '0 CK\8	AKE = .0 PPK	

III: RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	*	700F X	ESENATES ()	£	* * *	TATOT - AMB - (MMM)
* *	*	489,	186.	* #	*	. (
2, 2	x	418.	- ⁰ ,	1.5	¥	, ;
3. 5	1	191,	-80.	: .5	*	1.2
4.4	¥	23,	-207.	1,5	ŧ	. 0
£, \$	*	-34,	-175.	1.5	ź	4.7
6. 6	*	-277.	-255.	1.5	¥	2.2
7. 7	*	-314.	-115.	1.5	Ż	, (
8. 8	¥	-251,	-66.	1.5	*	.0
9. 9	×	-181.	17.	1.5	*	i
10. 10	×	- 4	198.	1.5	ź	3.1

I. SITE VARIABLES

9 = 1.0 M/S	CLAS = 4 (D)	VS = 10 CM/S	ATIM = 60. MINUTES	MIXH = 1000, M
BRG = 30. DEGREES	ZG = 108. CM	VD = .0 CM/S	AMB = .C PPM	

	RECEPTOR	i r Ý	000F X	CDINATES () Y	M) Z	1 1 1	TOTAL + AMB (PPM!
	:	2	469.	198.	1.5	*	• 5'
2,	2	r	418.	-Ç,	1.5	*	, 1
3.	4	Ż.	191.	-58,	1.5	ź	
4.	4	ź	39.	-207.	1.5	ź	. £
ŗ,	ē	*	-14.	-175,	: ;	x	4.1
ŝ.	ť	x	-277.	-255.	1.5	r	2.5
7.	7	¥	-314,	-115.	1.5	ż	,
÷.	ê	Ż	-251,	-35.	: . 5	¥	. 2
ĝ.	ç	Ż	-181.	Ī.,	:.:	Ŷ	.4
10.	* ", 1 0	*	-41,	195.	1,1	r	1.5

y = i	.0 M/S	CLAS = 4 (D)	VS =	.O CM/S	ATIM =	60. MINUTES	HIXE =	1000. M
BRG = 4	0. DEGREES	20 = 108. CM	AD =	.0 CM/S	= 3MA	.C PPK		

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	*	GOORDINATES (M)			‡ ±	TOTAL + AMB
RECEPTOR	*	Ÿ.	Ÿ	:	1	(bbk.
*	x	462.	190.	1.8		.0
e n w r	r	112	-9,	1.5	¥	, 2
t / /	ĭ	. ŷ.,	-50,	1.5	I	
4. 4	r	23.	-207.	:	1	, =
€. €	ı	- 1 4 .	-175.	1.5	1	5.8
P	1	^ .	-268.	:.:	Ż	2.7
· ·	2	-314.	-110.	1.1	X	. 4
B. 8	r	-351,	-8£.	: .5	İ	, ĝ
5. 3	×	-161,	1.	:.:	x	. 7
10.10	¥	-41.	168.	:.:	*	\$14

I. SITE VARIABLES

0 = 1.6 M/S	00AS = 4 .00}	VS = 10 0M/S	ATEM = 60. MINUTES	MINE = 1800. M
erg = 50. Degræes	Z0 = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	x x	700E X	DINATES () Y	y: J	i i i	(PPK) - YWS 201VF
	x	469,	180.	1,5	į.	, ,
2, 2	ı	419.	-3,	1.5	Ż	. 4
· ·	x	:9:,	-ēŧ,	1.5	×	1.1
4 4	x	29.	-201.	1.5	*	. 3
7 7	*	-54,	-175.		¥	3.€
ê. ê	¥	-305.	-255.		Ż	3.8
n n	×	-314,	-116.	: .5	Ÿ	.€
A	x	-381,	-86.	• 5	x	
ý, ý	*	-:::.	17,		ź	Ę
19. 13	ž	-41.	198.	1.5	x	0.1

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	* * *	C005	IDINATES (I	<u>()</u>	* *	TOTAL - AMB (PPM)
1, :	*	469.	180.		Í	, (
2. 2	*	418.	- ĝ.,	1.5	×	
	ż	191.	-58.	1.8	*	. 2
4. 4	*	29.	-20%,	1.5	x	. 2
8. 5	*	-34.	-175.	1.5	¥	2.2
6. 6	x	-257,	355.	1.5	ż	7
1. 1	*	-314.		:.:	r	
ŝ. ś	¥	-261,	-ôê.	:	I	1.6
9, 9	x	-131,	:7.	1.5	r	1.0
10. 16	*	- 2 .	135,	5.5	¥	1.1

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

•••	RECEPTOR	* * *	J00F X	EDINATES (E	4) Z	i i *	CATOTAL + AMB (MMM)
1		*	469.	180.	1.5	×	.[
3.	2	x	418.	-9,		ź	. 5
ç,	\$	¥	191.	-55.	1.5	¥	, 4
4.	4	¥	29.	-207.	:.:	x	, 0
ξ.	£.	x	-34.	-175	:.5	r	2.6
ŝ.	6	Ż	-277.	-355.	1.5	x	
5.	₩.	x	-314.	-116.	1.5	ĭ	2.4
3	ć	x	-251.	-99.	1.5	*	2.1
Ş.	ç	x	-181.			Ĺ	1,5
10.	13	x	-11,	195.	1.5	x	\$12

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		*	. COOR	DINATES (M }	TOTAL + AMB	
	RECEPTOR	*	X	Y	7	* *-	(BAK)
1.]	*	469.	180.	1.5	· x	, (
2.	2	*	418.	-9.	1.5	¥	.0
3.	3	*	191.	-58.	1.5	*	,1
4	<u>į</u>	*	29.	-207.	1.5	İ	, ô
ξ,	ė	×	-34.	-198.	1.5	*	2.5
8.	Ê	*	-277.	-258.		x	ιĒ
-	-	*	-314.	-113.		x	2.5
9.	8	*	-251.	-6°.	1.5	x	2.5
0.	G	*	-181.	17,	1.5	¥	2.5
10.	10	x	-41,	105.		x	5.4

I. SITE VARIABLES

T = 1.0 M/8	CLAS = 4 (D)	TS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1000, W
	25 = 198. CM	VI = .0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	* * *	COOR X	DINATES (1 Y	{	* * *	CATOT EMA + (Mqq)
	*	469.	18(.		x	. (
2, 2	×	418.	-3.	5	ż	.0
3. 3	¥	191.	-85,	1.5	*	. 0
4. 4	*	29.	-207.	1.5	*	.0
<i>t</i> , <i>t</i>	×	-34.	-178.		*	2.5
3 3 0 0 0 0	¥	277	-255.	1.5	×	.5
?. ?	*	-314.	-119.	1,5	×	2.2
3, :	x	-381,	-66,		¥	2.2
9. 0	x	-181.		: <u></u> .	×	2.0
10. 10	×	-41,	165.	:	Ż	4.4

I. SITE VARIABLES

T = 1.0 M/S	SUAS = 4 (D)	YS = .0 CM/S	ATIM = 80. MINUTES	MINE INC. N
and - 160 hodgaga	70 - 161 60	95 ± 10 10 10 10 10 10 10 10 10 10 10 10 10	±V7 ± ∴0 PRM	

		* *	700	RDINATES (u i	*	TOTAL T AMB
	50400mar	*		Y SDIANIUS Y	n 1 2	, ‡	T KED (PPM)
	RECEPTOR	*	X 	;	_	¥-	,
1.	Ì	*	4£9.	180.	1.5	*	. (
2.	2	ż	418.	- Ģ.	1.5	*	.0
9.	3	*	191.	-55.	1.5	*	.0
4.	4	*	29.	-207.	1.5	*	. 0
	Ş	*	-34.	-178.	1.5	¥	2.5
ì.	6	*	-2??.	-255.	1.5	x	. 5
?.	e :	*	-314.	-115.	1.5	*	2.2
),	9	×	-251.	-66,	1.5	*	2.0
	ç	x	-181.	• n	1.5	*	2.2
î.	10	*	-41,	108.	:	x	5.1

7 = 1,1 <u>V</u> 1\$	CLAS = 4 (B	VS = .0 CM/S	ATIM = EC. MINUTES	MIXH = 1006. X
ERS = 110, DEGREES	Z6 = 108, GM	VI = 11 08/2	AMP = '0 PBM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	* *	0003 Y	idinates (1 Y	7) Z	ž Ž	CATOT EMA + (MGQ)
• •	x	489.	. 190.	1.5	¥ ź	.(:
2. 3	*	418.	-9,	1.5	ź	. 0
£ , £	*	191.	-55.	:	×	.0
4, 4	x	26.	-297,	1.5	×	.0
5. ŧ	*	-54,	-175.	1,5	×	2.5
ŷ. ŝ	x	-277.	-255.	1.5	x	
п п • 1	*	-314.	-113,	1.5	*	2.6
9, 5	*	-251.	-88,	:.5	ž	2.0
9, 9	x	-:8:,	- -	1.0	x	3,8
16, 13	ż	";;,	198.	1.5	×	4.9

I. SIME WARTALIES

7 = 1.) ¥/8	GDAS = 4 [0]	VS = .0 CM/8	ATTM = 63. MINUTES	MINE = 1900. M
ped - 100 hpdppdd	MA 201 - 40	WE - COMPR	AVP = A DDV	

	*				×	TOTAL
	x	000	GEDINATES	. y :	×	- AME
RECEPTOR	¥	Σ	ÿ	r; 6-	x	(ppy)

		_ * ·				*-	
1.	1	*	469.	180.	1.5	*	, (
2.	2	*	418.	-9.	1.5	*	.0
3.	3	*	191.	-55.	1.5	*	.0
4.	4	*	29.	-207.	1.5	*	.0
5.	£	‡	-34.	-175.	1 . £	*	2.6
6.	ô	*	-277.	-255.	: . f	*	. Û
7.	7	*	-314.	-113	1.5	*	1.8
8.	8	*	-251.	-66.	1.5	*	2.0
g.	g	*	-181.	17.	1.5	*	1.8
10.	10	*	-41.	105.	1.5	*	4.5

U = 1.0 M/S	CLAS = 4 (D)	YS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000, M
BRG = 130. DEGREES	Z6 = 108. CM	VE = .6 CM/S	AME = ,6 PPM	

III. RECEPTOR LOGATIONS AND MODEL RESULTS

	RECEPTOR	* * *	0008 X	DINATES ()	V.	* * *	TOTAL + AME
1.	,	*	469.	180.	1.5	×	
Ş.,	5 #	*	418.	-9.	1.5	*	.0
ŷ.	Č	*	191,	-85,	1.5	¥	, (
4.	Ļ	*	25.	-207.	1.5	×	. 0
Į.,	5	×	-34.	-178.	1.5	Ì	2.6
ŝ.	6	*	-2?7.	-255.	1.5	¥	.0
7.	Ç.	×	-314.	-113.	1.5	¥	1.6
÷.	\$	*	-251,	-66,	1.5	*	1.9
ş.	ç	¥	-181,	17.	1.6	ż	1.7
13.	:5	×	-41.	105.	1.5	*	4.4

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D1	VS = 10 CM/S	ATIN = 80. NINUTES	MIXE = 1000. M
apo e 146 hadana	70 ± 100 CV	the toward	syn = a bov	

		ĭ				Ż	TOTAL
		r	790 R	DINATES ()	ų)	x	- AMB
	RECEPTOR	Ý	X	į.	-	*	(bbA.
		X	+			X -	
		*	4ê9.	186.	1.8	Ż	. :
*	5	x	418.	-9.		x	.0
5 r	r. V	x	191.	-ti.	1.5	¥	' î

4.	4	*	29.	-207.	1.5	*	. 0
5.	5	*	-34.	-175	1.5	*	2.8
6.	ô	*	-277.	-255	1.5	*	. 0
7.	7	*	-314.	-113	1.5	*	1.5
8.	8	*	-251.	-66.	1.5	*	1.6
9.	9	*	-181.	17.	1.5	*	1.8
10.	10	*	-41,	105.	1.5	*	4.5

U = 1.0 H/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. K
BRG = 150. DEGREES	20 = 108.0M	2\MD = .0 CM/S	AME = '0 bbk	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	300R X	DINATES () y	() 2	*	TOTAL + AMB PPM
:		*	4 £ § .	186.	:.5	*	, 5
2.	2	*	418.	~9.	1,5	*	, 0
έ.	5	*	191, -	-55.	1.5	1	.0
4.	4	x	39.	-207.	1.5	*	.0
5.	E	×	-34.	-175.	1.5	×	2.8
€.	6	×	-277	-255.	1,5	x	.0
7.	?	*	-314.	-113.	1.5	*	1 . 5
8.	8	*	-251,	-ôô.	5	x	1.5
Ç.	Ç	×	-181.	17,	1.5	±	1.6
10.	10	*	-41,	105.	1.5	*	4.7

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (5)	VS = .0 CM/S	ATIM = 60. MINUTES	VIXE = 1000. Y
BRS = 180. DEGREES	ZC = 108. CM	VD = .(CM/8	AMB = .C PDM	

RECEPTOR	x * x	0003 X	DINATES () Y	M) Z	; ; ; ;	(PPK) + WPP TOLYT
1. 1 2. 2 5. 3 4. 4 5. 5	* * * *	4 4 5 6 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	180. -9. -25. -207. -175.		* * * * * *	
6, 6	¥	-257. -314.	-256, -116,	1.5	x x	.0 1.3

3.	8	*	-251.	-66.	1.5	*	1.5
9.	9	*	-181.	17.	1.5	*	1.2
10.	10	*	-41.	105.	1.5	*	4 9

U = 1.0 M/S	CLAS = 4 (D)	YS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. H
BRG = 17C. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND HODEL RESULTS

		± x		GOORDINATES (M)			LATOT ENA -
	RECEPTOR	x	χ	ÿ	<u></u>	I	(PPM:
1.		x	460,	180.	1.5	¥	*
2.	2	ŧ	418.	-9%	:.5	Ż	.0
3.	3	*	191.	-55.	1.5	Ź	.0
1	4	*	29.	-207.	1.5	×	
5.	5	±	-34.	-175.	1.5	¥	1.5
Ĝ,	g	*	-277.	-255.	1.5	*	.0
7	?	¥	-314.	-118.	1.5	x	1.2
ŝ.	8	ż	-951	-ôĉ,	1.5	¥	1,5
Ģ.	ĝ	x	-181.	17.	1.5	×	1.1
10.	10	x	-41.	105.	1.5	¥	4.1

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1600. H
BRG = 180. DEGREES	Z0 = 108, CM	VD = .0 CM/S	MAG 0. = dMA	

	RECEPTOR	* *	CGOF X	RDINATES ()	y) Z	* * *	TOTAL + AMB (MPM)
:.		ż	469.	180.	1.5	*	, r
2.	2	X	418	-ŷ,	1.5	¥	.5
÷.	ę G	×	191.	-55.	1.5	×	. Û
4.	4	r	29.	-207.	:.5	×	.6
5.	;	Í	-34.	-175	:,5	×	. "
€.	ĵ	¥	-277	-255.	1.5	x	.0
7.	?	×	-3:4	-1:5	: . 8	*	3.
8.	3	×	-251.	-88.	1.6	ż	1.5
ĝ.	9	Ý	-161,	17.	: . £	×	1.1
:0.	10	x	-41.	195.	5	×	2.6

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. N
BRG = 190, DEGREES		VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MCDEL RESULTS

	RECEPTOR	* * *	COOR X	IDINATES (! Y	() 2	* * *	TOTAL + AMB (PPM)
•	:	*	469.	180.	1.5	ż.	. ?
2.	2	x	418.	-0,	1.5	×	. 0
3.	2	*	.01.	-55.	7.8	¥	, 0
4	4	*	28.	-207.	1.5	İ	1.6
٤.	Ę	x	- 51	-175.	1.5	x	
÷.	£	Ŷ	-271.	-255.	1.5	*	. , 0
•	9	×	-214.	-115.	1.5	x	. 5
ŝ	į	×	-951,	-8£.	1.5	¥	1.3
9,	g	Ż	-181.	17.	1.6	¥	1.1
1.0	10	*	-41.	105.	1.5	*	1.4

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1000. M
	ZO = 108. CK			

	RECEPTOR	x x *	000E X	DINATES (1 Y	K¦ Z	* * *	LATOT EMA + (M99)
		*	469.	180.	1.6	*	ŗ
2	2	*	418.	-9.	1.5	×	, J
÷.	2	Ŕ	191,	-55.	1.5	*	.0
,	4	*	20,	-207.		*	2.5
	5	*	-34,	-175.	1 5	¥	. (,
ŝ.	ŝ	¥	-277.	-255.	1.5	Ż	.0
7	1	¥	-314.	-113.	1.5	*	. 2
8.	3	*	-251.	-66.	1.5	ź	1,1
9.	g	ı	-181.	4.0		×	1.1
10.	18	*	-41,	198.	1.5	*	1.2

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C00F	IDINATES (1 Y	() Z	* *	TOTAL + AMB (PPK)
		 ‡	469.	180.	1.5	X- *	.8
2	2	*	418.	-9.	1.5	*	.0
2.	3	*	191.	-55.	1.5	Ý	. 3
4.	4	ż	29.	-207.	1,5	*	3.1
5.	5	ż	-34.	-175.	1.5	*	.0
ô.	£	x	-277.	-255.	1.5	z	. 9
7	T (×	-314.	-113,	1.5	Ż	.0
9.	9	¥	-251.	-66.	:	*	. 6
Ģ.	Ĉ	x	-181.	1.7	1.5	*	. 7
:0.	10	Ż	-41.	105.	1.5	*	1.1

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 OM/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 220 DEGREES	76 = 108. CM	VD = .0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COOF	DINATES (1 Y	7	* * *	TOTAL + AMB (PPM)
1		*	469. 418. 191. 29. -34.	180. -9. -55. -207. -105. -255.	1.5	* * * * * * * * * * * * * * * * * * * *	1.2 .0 .5 3.1
3. 9.	; ; ; ;0	; ; ; ;	-314. -251. -131.	-113. -66. 17.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	* * *	.0 .2 .4 .8

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .(CH/S	ATIM = 60, MINUTES	MIXE =	1900. X
RRG = 236 DEGREES	76 = 168. CM	VD = .(: CM/S	AME = 10 PPM		

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	СОО F Х	DINATES (1 Y	() Z	* * * *-	TOTAL + AMB (PPM)
1.	1	*	469.	180.	1.5	*	1.5
2.	2	*	418.	-9,	1.5	*	.1
3.	3	*	191.	-55.	1.5	*	. £
4.	4	ż	29.	-207.	1,5	*	3.1
δ.	5	*	-34.	-175.	1.5	ź	.0
6.	Ĝ	*	-277.	-255.	1.5	*	. 0
7.	?	×.	-314.	-113.	1.5	ż	6
ŝ.	8	*	-251.	-66.	1.5	ž	.0
9.	g	*	-181.	17.	1.5	¥	. 0
10.	10	*	-41,	105.	1.5	¥	

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	78 =	.0 CH/S	ATIN = 60. MINUTES	MIXE = 1000. M
BRG = 246. DEGREES	Z0 = 108. CM	VF =	.0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COOR X	DINATES (F	() Z	* * *	TOTAL + AMB (PPM)
•	•	*	469.	180.	1.5	ź	2.5
Ž.	2	*	418.	- G .	1.5	ż	. ?
ŝ.	6	*	191.	-55.	1.5	×	.8
Ł.	4	¥	29.	-207.	1.5	*	2.9
5.	Į.	ż	-34.	- 75.	i.£	Ż.	.0
ŝ.	5 .	*	-995	-255.	1.5	*	.0
7.	•	ż	-314.	-110,	1.5	¥	.0
9.	8	ž.	-251.	-6€.		¥	.0
3.	ç	*	-181.	17.	1.5	Ŷ	. 6
10.	10	*	-41.	106.	1 5	x	, 3

I. SITE VARIABLES

U = 1.0 M/S	CDAS = 4 (5)	VS = .0 08/8	ATIM = 80. MINUTES	MIXE = 1885. M
SRG = 250. DEGREES	Z6 = 108, CM	VE = .0 0%//8	MAG 0, = SMA	

	RECEPTOR	* * *	COOR X	DINATES ()	{ } Z	* * *	TOTAL + AMB (PPM)
i.	1	*	469.	180.	1.5	*	2.2
2.	2	*	418.	-9.	1.5	*	. 5
3.	3	*	191.	-55.	1.5	*	1.1
4.	4	*	29.	-207.	1.5	*	2.7
5.	5	*	-34.	-175.	1.5	*	.1
ŝ.	6	*	-277.	-255.	1.5	*	.Û.
7.	7	*	-314.	-113.	1.5	*	.0
8.	8	*	-251.	-66,	1.5	¥	.0
g,	g	*	-181.	17.	1.5	¥	, (
10.	10	*	-41.	105.	1.5	¥	. 0

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 GM/S	ATIM = 80, MINHTES	MIXH = 1000, Y
BRG = 280. DEGREES	%0 ≈ 108. CM	7D = .0 DM/S	AMB = .0 FPM	

- III. RECEPTOR LOCATIONS AND MODEL RESULTS

		*	COOR	DINATES (1	()	*	TOTAL + AMB
	RECEPTOR	* 	Σ	Ÿ	2	* *-	(PPK)
	•	×	469.	180.	1.5	¥	1.0
') L	2	*	418.	-9.	1.5	*	1.0
ŝ	ŝ	*	191.	-55.	1.5	¥	1.6
4	4	*	56.	-207.	1.5	*	2.8
ō.	8	*	-34.	-175.	1.5	ķ	. 5
6.	ô	×	-277.	-255.	1.5	¥	.0
7.	?	*	-314.	-113.	1.5	*	.0
8,	8	*	-251.	-66.	1.5	¥	.0
3.	ç	¥	-181.	4.9	1.5	ż	.0
0.	10	±	-4:,	108.	:,;	*	.0

I. SITE VARIABLES

J = 1.0 M/S	SLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MINH = 1911. M
BRG = 270. DEGREES	20 ≈ 108. CK	VB = .0 GM/S	AME = .0 PPM	

	İ				×	TOTAL
	*	00.	DEDINATES	(M)	*	• AVE
RECEPTOR	*	X.	V	2	ż	(pay)

		t				*-	
1.	1	*	469.	180.	1.5	*	. 6
2.	2	*	418.	-9.	1.5	*	1.4
3.	3	*	191.	-55.	1.5	*	1.8
4.		*	29.	-207.	1.5	×	3.2
5.	5	*	-34.	-175.	1.5	*	.9
€.		*	-277,	-255.	1.5	*	.0
7.		*	-314.	-113.	1.5	*	. 0
8.	3	*	-251.	-66.	1.5	*	.0
9,	9	±	-181.	17.	1.5	*	.0
10.	10	*	- 1 T	105.	1.5	¥	.0

y = 1.0 M/S	CLAS = 4 (D)	VS = .0	CK/S	ATIM = 60. MINUTES	MIXH = 1000. N
upo = 580 Decepts	26 = 108. CM	VP = .0	CM/S	AME = 10 PPK	

III, RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	000F X	DINATES () Y	() Z	* * *	CATOT S AME (M949)
1.	1	*	469.	180.	1.5	*	. 3
2.	2	*	418,	-9.	1.5	*	1.7
3.	9 3	x	191.	-55.	1.5	*	1.0
4.	4	*	20.	-207.	1.5	×	3.5
5.	5	*	-34.	-175.	1.5	*	1.1
6.	6	*	-277.	255.	1.5	*	.0
7.	7	×	-314.	-113.	1.5	×	.0
8.	8	×	-251.	-66.	1.5	*	.0
9.	Ģ	ż	-18l.	17.	1.5	Ż	. 0
10.	10	x	-41.	105.	1.5	ķ.	. 9

I. SITE VARIABLES

U = 1.0 M/S	DIAS = 4 (D)	VS =	.0 CM/S	ATIK = 60. MINUTES	MINB = 1000, N
REG = 290, DEGREES	Z0 = 108. CK	VD =	.0 CM/S	AME = .0 PPK	

RECEPTOR	x x		DINATES (! v	χ) Σ	x	TOTAL + AMB (MM4)
1. 1 2. 2 3. 3	* *	469. 418. 191.	180. -9. -88.		ź	.0 1,9 2.0

4.	4	*	29.	-207.	1.5	*	3.6
5.	5	*	-34.	-175.	1.5	*	1.1
6.	6	*	-277.	-255.	1.5	*	.0
7.	7	*	-314.	-113.	1.5	*	. 0
8.	8	*	-251,	-66.	1.5	*	. 0
9,	9	*	-181.	17.	1.5	×	. (
10.	10	*	-41.	105.	1.5	×	. ()

U = 1.0 M/S	CLAS = 4 (D)	¢. = 2V	ON/S ATIM =	60. MINUTES	MIXE =	1999. K
BRG = 300. DEGREES	Z0 = 108. CM	0. = IV	DM/S AME =	.f bbñ		

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		ž	COORDINATES (M)			ž z	IATOT EMA +	
	RECEPTOR	x	X	Y	2	*	: PPM :	
1.	 :	, 	4ê9.	180.	:.5	*	.0	
2.		*	418.	-9.	1.5	È	1.5	
ģ.,	3	*	191,	-55,	1.5	*	2.0	
4.	4	*	29.	-207.	1.5	±	3,7	
	£	¥	-34.	-175.	1.5	*	1.1	
8.	6	*	-277.	-255.	1.5	ŧ	.0	
ŗ,	•	*	-314.	-113.	1.5	Ż	.0	
8.	8	ż	-251.	-66.	1.5	*	.0	
Ç	Ş	¥	-181.	17.	1.5	¥	.0	
10.	10	*	-41.	105.	1.5	*	,0	

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	YIM = 1000. M
BRG = 310. DEGREES	Z0 = 108. OM	VD = .0 CK/S	AMB = .(PPM	

	BBCZPTOR	; ; ;	200F X	edinates () Y	M } Z	* * x	TOTAL + AMB (PPM)
	:	¥	469,	185.	1.6	×	.(
2.	2	x	416.	-9.	5	I.	1.5
ć.,	9 č	×	101,	-55.		¥	2.0
4.	4	*	29.	-307.	1.5	×	3.9
č.	į.	*	-34,	-175,	: . 5	¥	1.1
¥0.00	ĉ	Ý	-2.7	-255.	1,5	×	.9
7.	r :	X	-314.	-116.	1.8	×	, ′

8.	8	*	-251.	-66.	1.5	*	.0
9.	9	*	-181.	17.	1.5	*	, 0
10.	10	*	-41,	105.	1.5	*	. 9

U = 1.0 H/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000, M
BRG = 320. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AKB = .C PPK	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	С00 F Х	RDINATES (A Y	7.	* * *	TOTAL + AMB (PPM)
1.	:	×	469.	180.	1.5	¥	.0
2.	2	×	418.	- ŷ ,	1.5	r	2
: .	ţ.	*	191.	-55,	1.8	¥	2.0
4.	<u> </u>	×	29.	-207.	1.5	x	4.0
ξ,	5	*	-34.	-176.	1.5	¥	1.1
6.	6	Ż	-277.	-255,	1.5	¥	. ?
7.	7	×	-314.	-118.	1.5	¥	.0
3,	8	*	-251.	-66.	1.5	*	.0
g.	9	*	-181.	17.	1.5	X	.0
10.	10	*	-£:,	108.	1.5	*	.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1800. M
BRG = 330. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

	RECEPTOR	* * *	000 R X	DINATES (1 Y	{	x * *	TOTAL + AMB (MPR)
1.	•	ż	469.	180.	1.6	×	. û
2.	2	*	418.	-9.	1.6	*	1.0
3.	9	*	191.	-55.	1.5	*	1.6
4.	4	‡	29.	-207.	, , , , , , , , , , , , , , , , , , ,	¥	4.4
ξ.	ā	r	-34.	- 55.	1.5	¥	1.0
6.	55	¥	-277.	-255.	1.5	x	. 3
7.	•	*	-314.	-115.	1.5	ż	.(
ŝ.	8	x	-251,	~86,	1.5	ĭ	.0
â.	ç	×	-181.	1.		×	.0
10.	10	x	-4.	108.	116	¥	

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. HINUTES	MIXH = 1000. M
BRG = 340. DEGREES	ZO = 108. CM	VD = .0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

RECEPTOR	* * *	C00F	LDENATES (1 y	M) Z	* * *	TATOTAL + AMB (MMG)
	*	469.	180	1.5	x	, (
2. 9	¥	418.	-§.	1.5	×	, 9
\$. \$	×	191.	-55.	1.8	¥	:.3
4. 4	ź	29.	207	1.5	x	4.7
1. 1	x	-34.	-17E,	1.5	r	1.0
2. 2	ż	-277.	-258.	1.5	Ż	1.5
7, 6	×	-214.	-116.	1.5	2	r
2. 1	x	-251.	-66,	1.5	¥	.(
2, 2	x	-181.	15	1.5	x	.0
10 10	*	-41.	105.	1.5	ĭ	.0

I. SITE VARIABLES

U = 1,0 M/S	GDAS = 4 .(D)	¥\$ =	.0 CM/S	ATIM = 60. MINUTES	MIXE = 1000. W
BRG = 850. DEGREES	ZO = 108. CM	VD =	.0 CM/S	AMB = .0 PPM	

	RECEPTOR	* *	0009 X	DINATES II	Y.) Z	* * *	TOTAL + AME (PPK)
	4	*	469,	180.	1.5	×	ę
2.	5	×	418.	-3.	1.5	×	3.
÷.	6	¥	191.	-55,	1.5	ż	1.1
ŧ,	4	¥	29.	-201.	1,5	¥	4.5
ţ,	2	×	-34,	-175.	1.5	*	1.8
2.	\$ F	r	-277,	-255.	1 0	r	
7	•	¥	-314.	-113.	1.5	x	.0
ş,	ŝ	*	-251.	-66,	1.5	×	. 2
3.	ç	x	-181.	: -	7	X	
Ú	10	×	-11	108.		x	. 3

		*	COOF	ldinates (i	H)	± ±	TOTAL + AMB
	RECEPTOR	*	X	Y	Z	*	(PPM)
:.	1	*	469,	180.	1.5	*- *	.0
2.	2	*	418.	-9	1.0	*	. 7
4	:	*	191.	-55.	1.8	1	1.1
4,	ļ.	*	29.	-207.	1.5	¥	3.1
ţ,	£	¥	-34.	-175	1.8	×	3.5
6.	f	x	-277.	-255.	: . 5	*	1.8
7.	7	*	-314.	-110.	1.5	ż	.0
8.	8	±	-251.	-66.	1,5	¥	, Ą
3.	§	*	-181.	+ # 1.1.	1.6	ż	. 0
10.	10	*	-41,	105.	: :	ż	. 8

CALINES: CALIFORNIA LINE SOURCE DISPERSION MODEL - SEPTEMBER, 1979 VERSION

PAGE 1

JOB: 1275/DALE MABRY BUILD 2010 RUN: 2010 BUILD

II. LINK VARIABLES

LINK DESCRIPTION	¥	Х1	Y 1	Х2	Y2	*		LINK BRG (DEG)			EF (G/MI)	(K) H	(R) A
A. 1275 WB LOCAL SEGI	*		119,	369.	119.			270.		3797.		7.6	24.4
B. 1275 WB LOCAL SEG2	*	369.	126.	133.	98.	¥	238.	263.	₽Ľ	2121.	9.2	7.6	17.1
C. 1275 WE LOCAL SEG3	¥	133.	98.	-70.	14.	¥	219.	248.	\mathfrak{P}_{1}^{1}	2121.	9.2	7.6	17.1
D. I275 WB LOCAL SEG4	×	-79.	4	-540.	-:8:.	*	316.	200.	ΡŪ	2121.	9.2	7.6	21.3
E. 1275 BB LOCAL SEGI	*	-285.	-205.	С.	-56.	x	036.	55.	PL	2121.	11.9	5.6	21.3
F. 1275 EB LOCAL SEG2	×	Û,	-58.	195.	£.	x	168.	88.	21	2121.	11.9	7.6	17.1
G. 1275 EB LOCAL SEG3	ż	155.	ŝ,	366.	40.	¥	2:5.	ŝ	ΞL	2121.	11.6	7.6	17.1
H. 1275 BB LOCAL SEG4	*	366.	48.	£30.	50.	x	138.	58.	? <u>`</u>	2197.	::.9	7.6	24.4

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000, M
BRG = 10. DEGREES	ZO = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	000E X	DINATES (2 K)	*	TOTAL + AMB (PPM)	*	Ł	B	Ç	(P	E Br)	F	G	H
	1	*	469,	180.	1.5	×. *	.0	-¥ *	.0	. 0	.0	, ()	.0	. 0	. 0	. 0
2.	2	ż	418,	-0,	1.5	¥		*	. 2	.0	.0	.0	Ĉ	. (.0	į
3.	3	t	191.	-55.	:.5	*		*	. 0	.1	6.	.0	. 0	.0	. 2	. 0
4.	4	*	29.	-207	1.5	×	. 2	¥	.0	, (• •	, Ç	.0	. :	.0	. C
5.	5	¥	-34.	-175,	1.5	*	. 4	Ż	.0	. :	.1	.0	. 2	1	.)	ņ
€.	ê	¥	-2.7.	-255.	1.5	*	. ĉ	¥	. 6	ı Ĉ	.0		, ŧ	.0	.0	, ĉ
	?	Ż	-314.	-115,	1.5	×.	. (;	x	.0	.0	, Ĝ	.0	.0	.0	,)	Û
ŝ.	É	*	-251.	-66.	1.8	¥	- (1	*	.0	.0	.0	, (C	.0	.0	.0
ő.	g.	¥	-181,	17.	1,5	x	.0	¥	.0	, 0	.0	. 0	. 0	. 0	.9	.6
10.	10	¥	-41.	105.	:.5	x	.0	*	.Û	. 0	.0	.0	Û	.0	.0	i Ç

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/8	ATIM = 80. MINUTES	MIXH = 1900. W
BRG = 20. DEGREES	26 = 108. CM	VB =0 OM/8	AME = .0 PPM	

7. 7 8. 6	-*	Z * (PPM) 1.5 * .0 1.5 * .7 1.5 * .3 1.5 * .3 1.5 * .7 1.5 * .0 1.5 * .0	* * * * * * * * * * * * * * * * * * * *	A B .0 .0 .2 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0	C .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .1 .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.000.11.000.000	.0 .2 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0	
,	CLAS = 4 (0) ZC = 108. CM	AD = 16 CA12 A2 = 16 CA12		WRS =	: 00. : .0	MINUTES PPM				MIXE = 1000. K
1911 10.4	* CGORDINATES (M	2 * (PPM)	x x	ຸ ລຸລ	C	(FPM)	D.,	G	н	
2. 2 2. 2 3. 4 5. 6 6. 7 3. 6 3. 8	* 469. 180. * 4189. * 19155. * 20207. * -34175. * -277255.	1.5 * .0 1.5 * .7 1.5 * .3 1.5 * .3 1.5 * .3	* , * , * , * , * , * , * , * , * , * ,	2 .0 .10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0000	.0 .0 .0 .0 .9 .0 .1 .7	.0	.0.2.1.0.0.0	0.60000000000	
I. SITE VARIABUES										
U = 1.0 M/S BRG = 40. DEGREES	ODAS = 4 (D) 26 = 108. OM	AS = '0 CK\8		AME =						MIXE = 1900, K
III. RECEPTOR GOCATION	STAND MODEL RESULTS									
	* COORSINATES (K)		×	ŝ	0	jepv D E	F	ŝ	 	

1 1	1	*	469.	180	1.5	*	. 0	*	. 0	.0	.0	. Û	.0	.0	. 0	.0
2.	2	*	418.	-9.	1.5	*	. 6	*	. 1	.0	.0	.0	.0	.0	.0	. 5
3.	3	*	191.	-55.	1.5	*	, 3	*	.0	. 1	.0	.0	.0	. ()	. 2	.0
4.	4	*	29.	-207.	1.5	*		¥	.0	.0	.0	.0	.0	0	.1	.0
5.	5	*	-34.	-175.	1.5	*	. 3	*	. 0	. ;	.0	,0	.0	. 2	.0	. 0
6.	6	*	-277.	-255.	1.5	*	3.	¥	.0	.0	.0	.1	. 7	. 0	. e	. (•
7.	?	*	-314.	-113,	1.5	*	.0	*	.0	.0	.0	.0	.0	0	.0	.0
8.	8	*	-251.	-66.	1.5	*	. 0	¥	.0	.0	, 0	.0	.0	.0	. Û	. 0
9.	9 .	*	-181.	17.	1.5	*	.0	*	.0	.0	.0	.0	.0	. 0	.0	.0
10.	10	*	-41.	105.	1.5	Ż	. 0	*	.0	.0	Û	.0	.0	, Q	. 0	. (;

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
BRG = 50. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C005 X	EDINATES (K J	Ý	TOTAL + AMB (PPM)	¥	ř.	Ŀ	C	(P)	3 (Nd	Ŗ	û .	H
1	1	*	469.	180.	1.5	ż.		*	Ę.	. 9	.0	.0	.0	, û	0	, ĝ
2.	2	x	418.	- ĝ.	1.5	*		×		.0	. 0	.0	.0	.0	. (;	. 5
3.	5	¥	191.	-55.	1.5	İ	. 4	ź		.0	Ŋ	.0	.0	.0	. 2	.i
4.	4	*	29.	-207.	1.5	Í		*		.0	.ĉ	.0	.0	.0	1	. :
5.	5	*	-34.	-175.	1.5	ż	, <u>6</u>	*	.0	.0	.0	.0	.0	.1	.:	.0
ΰ.	6	*	-277.	-255.	1.5	*	، 6	¥	.0	. (.0	. 0	.6	.0	.0	, (i
7.	?	*	-214,	-113.	1.5	¥	.1	*	. ()	ı Ü	.0	1	.0	.0	- 6	.0
3	8	¥	-251.	-66.	1.5	*	.0	×	. 0	.0	.0	.0	.0	.0	0	.0
9,	9	×	-181,	17,	1.5	¥	.0	*	.0	.0	.0	. 3	. G	.0	. C	.0
:0	16	*	-41.	105.	1.5	*	, (ż	(.0	.0	ı Ê	.0	.0	.€	. (

I. SITE VARIABLES

Ų =	1.0 M/S	CLAS = 4 (D)	VS =	.0 CM/S	ATIM = 60. MINUTES	MIXH = 1000, M
BRG =	60. DEGREES	Z0 = 108. CM	V[=	.6 CM/S	AME = .C PPM	

		*					.o.u.									
		r	COORD	INATES (M)		¥	: AME	1				(P:	, V			
27	geprob	r	X	Y'	ŗ.	*	(Bon)	x	Å.	3	C	Ð	3		G	3
		. ż				., × .		. Ý.								
1 1		*	483.	180.	1.0	x		r	.0	• ٧		7	. :	Ξ.	.0	Ü
2. 2		*	413	-3,	1.5	¥	. 4	¥	ĘĘ.	(. (.0	3.	.0	.(.4
4. 4		Ŷ	131,	-55.	1.5	X	. 5	×		.,	νÝ	.2			. 2	12
4.4		*	£9,	-207.	: . 5	x		ż	.(.e	.(, S	i.C	. (
5. 5		¥	-34	-175.	:	*	2	1	, j	. (, ŷ	10	Ĵ			
€, €		x	-277	-255.	1.5	x		7		.(16	.ĉ	d			î.

7. 7	0.0.0.0.0
------	-----------

U = 1.0 H/S	CLAS = 4 (D)	VS = .0 CM/S	ATIN = 60. MINUTES	MIXH = 1000. M
BRG = 70. DEGREES	ZO = 108. CM	VD = .0 CK/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	¥ * *	COOR X	DINATES (Z K	×	TOTAL - AME (PPM)	¥	Ł	â	Ĵ	(P)	PM! E	ŗ	S	::
1	:	*	469.	180,	1.5	x	. ()	¥	. A	.0	.0	.0	,0	.)	. 5	, Ç
2.		×	418.	- <u>g</u>	1.1	ý	. 2	Ż	. (-	.0	.(.0	,(î.	• (. 5
3,	_	x	191.	~55.	1.0	x	, 4	×	• 4	. 0	. 3	.0	.0	. 9	.:	. 2
4.		3	29,	-207.	1.5	Ý	, A	Ż	.0	.0	.0	.(.0	. 0	.(. (
5.	5	*	-34.	-175.	1.5	x	.1	×	.0	.0	.0	.0	.0	.0	.0	, 1
£.	€	*	-275.	-255.	1.5	×		*	. C	.0	.0	.0	.1	.0	.0	. 0
7.		*	-314.		1.5	¥	. 1	*	.û	.0	.1	.6	.0	ij	.0	Ü
8.	\$	¥	-251.	-6ê.	1.0	Ŕ	.4	*	.0	.0		. 3	.ĉ	.0	.0	.0
9.	9	*	-181.	17.	1.5	¥	.:	Ŕ	.0	. 0	.1	.0	.0	, 0	. ĵ	.0
10.	10	*	-41.	105.	1.5	*	.0	*	.0	.0	.0	.0	.0	. ()	.0	.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 OM/S	ATIN = 60. MINUTES	MIXE = 1000. W
RRG = 80. DEGREES				

		*	COOR	DIKATES (¥	TOTAL • AME	*				(P)	BR.	_	~	-1
	RECEPTOR	x	X	Y .	Ž.	¥	: PPM'	¥ _¥	9	â	Ĵ		113	D+	ű	7
		*	469.	180.	1.5	×	.0	¥	, û	.0	.)	.0	.0	.0	. 0	.0
2.		*	418.	-9.	1.5	Ė		¥	,¢	.0	. Ç	.0	.0	.0	.0	. (
3.	-	ż	191.	-55.	1.5	*	1.4	¥		.0	.0	.9	.0	.Û	.0	
4		×	29.	-201.	1.5	×	.0	×	. Ĉ	.0	.0	.(.0	· (·	.0	.0
έ,	5	*	-34,	-175.	1.5	×	. 9	×	, á	, ()	.0	.0	.0	.0	.0	.5
€,	E	¥	-277.	-258.	1.5	x	r i v	Ż	, Ç	.0	, Ĉ	. 0	.(, î	.6	.0
7.	7	¥	-314.	-113.	1.5	İ	. 9	x	- 6	10	1 %	.₿	• •		. 3	• 2
ŝ.	8	r	-251.	-66.	1.8	x	, ĉ	¥	. (.0	Û	, 4	.0	. :	• •	ı,
ş,	3	*	-181.	* 7	1.5	*	; :	x	.0	• •	. 2	.0	, û	, \$, .	.0
10.	1(*	-41,	188.	1.5	*	. 1	x	, 🤄	. 1),	. 6	, t	10).

Ü =	1.0 W/S	CLAS = 4 (D)	VS =	.0 CH/S	ATIM = 60. MINUTES	MIXH = 1000. H
BRG =	90. DEGREES	20 = 108. CM	VD =	.0 CM/S	AKE = .0 PPK	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	C00F	RDINATES (k) Z	*	TOTAL + AMB (PPW)	*	Å	В	3	t. (b	P#) E	P	G.	H
1	1	· · · · · · · · · · · · · · · · · · ·	469,	180.	:.[*	.0	*	.0	.0	. û	, ţ)	.0	.0	.0	.)
2.		ż	418.	-9,	1.5	×		ġ.	.0	.0	, Ó	. č	.0	. C	. 0	.0
3.	3	*	191,	-55.	1.5	×	.0	×	.0	.0	.0	Ů	.0	.0	.0	.0
4.	4	Ř	29.	-267	1.8	¥	.0	¥	, (i	,ţ	.0	15	.0	.(, f	.0
Ş,	5	¥	-34.	-175.	1.5	x	, 0	x	.0	, Ç	. 0	4	.3	,£	. 17	.0
ĉ.	ŕ	x	-277.	-255.	1.8	ż	.(Ì	. 0	,0	. (, <u>p</u>	, ĉ	, (. (.0
e,	?	±	-014.	-113.	1.5	*		x	3	.0	, (. 2	.9	i, Ç	3
ŝ.	§	*	-251.	-66,	1.5	¥	, 6	¥	.0	, î	, 9	. 4				٠Û
g.	3	*	-181,	?	1.5	×	. 5	x	.0	J.		.:	i,ĉ		.:) Î
:::.	10	*	-41,	108.	1.5	*	. :	¥	1 4	,:	.:	. (.0	1,	

I. SITE VARIABLES

0 = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. H
PRG = 100, DEGPRES	20 = 108, CM	VB = .0 CM/S	AMR = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C001	DINATES (M) Z	*	TOTAL + AMB (PPM)	*	A	3	C	(P	PK! E	F	G	Æ
		×				×-		- X								
- : .	•	*	469.	185.	1.5	¥	.0	Ż.	. 6	. 3	. 0	. 3	Û	.0		.0
2.	2	*	418.	- G ,	: . 5	*	.0	*	.0	.0	.0	. (.0	.0	.0	.0
ĵ.	5	*	191,	-55.	1.5	*	. 0	*	, 3	. 0	. 0	. 0	,0	.0	,0	, Ģ
4.	4	×	30	-207,	1.5	¥	.0	Ý	. (.0	ı (:	ſ	.€	. 0	Ċ.	. 0
5.	£	¥	-34,	-178.	:	×	.0	*	.0	.0	. 6	.0	.0	.0	. 0	4
ĉ.		×	-277.	-855.	1.5	×		ź.	.0	.0	.0	٤,	.0	.0	£	Ú
n	7	±	-314.	-113.	1,5	*		¥	.0	.0	ιψ	. 5	. 2	, g	.0	, û
٤	٤	*	-251,	-66.	1.5	¥	.5	×	0	, 0	. 0	/	1	. {:	Ċ	.0
	g	¥	-131.	17.	1.5	ż	-	×	. 0	.0		2	į		Ü	
10.		x	-41.	108.	1,5	*	. 4	*	.0	.1	.1	. (,6	.0		

I. SITE VARIABLES

U = 1.0 M/8	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 80. MINUTES	MIXE = 1000. M
000 - 116 - 0000000	76 - 169 CV	ur = /r ov/c	AND - OPPA	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		* COORDINATES (M)				* TOTAL * * + AMB *						(PPK)					
	RECEPTOR	*	X	Y	2	*	(PPK)	* -*	Å	В	С	D	E	F	G	H	
1.	1	*	469.	180.	1.5	*	. 0	*	.0	.0	. 0	, 1	.0	.0	,0	.0	
2.	2	‡	418.	-9.	1.5	*	.0	¥.	.0	.0	. 6	. 0	.0	. 0	.0	.€	
3.	3	*	191.	-55,	1.5	*	.0	¥	.0	Ţΰ	. 0	.0	.0	, 0	. 0	. 0	
4.	4	*	29.	-207.	1.5	*	.0	×	.0	, O	. ()	.e	.0	.0	.0	.Ç	
5.	5	*	-34,	-175.	1.5	*	.0	*	.0	.0	ņ	. ()	.0	.ů	.0	.0	
ĉ.		*	-277.	-255.	1.8	ż	.0	ģ	, (, e	. 0	, a	.0	.0	.0	, (
7.	· ·	*	-314.	-113.	1.5	×	?	*	,0	.0	A	. :	.2	, 3	.0	.9	
ŝ.	•	*	-251.	-66.	1.5	¥	. €	Ż.	.0	, Ç	.0	. 4	. 2	, û	.0	.0	
9,		*	-181.	17	1.5	ż		×	.0	.0	Û	. 2	.1	. 1	. ()	.0	
:0.		*	-41.	100.	5	ż	¢	x	. 0	.0	. 2	.(. (:	.0	.1	.0	

I. SITE VARIABLES

0 = 1.0 M/S	$CLAS = 4 \{D\}$	VS = .0 CM/	E ATIM = 60. MINUTES		MIXH = 1000. H
BRG = 120. DEGREES	Z0 = 108. CK	AD = .0 CR/	MAR = '0 bbw	•	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	X C003	DINATES (Y	K) Z	*	TOTAL + AMB (PPM)	r	A	В	C	{ P}	PK; E	F	G	ij
		*				* .		" ×								
	•	¥	460.	130.	1.5	*	* 1	×		.0	.0	.0	, Ç	.0	.0	.0
2.	2	*	418.	-Ģ.	1.5	*	, ĉ	*	.(, (.(.0	.0	.0	.0	.0
3.	3	×	91,	-55.	1.5	*	٠, ٥	ż	.0	,0	.0	.0	.0	.0	.0	.0
4.	Ł	*	29.	-207.	1.5	×	.0	¥	.0	.0	.Ĉ	. 6	.0	.0	·Ĉ	.0
5.	5	*	-34	-175.	:,5	*	.0	*	.0	, (.0	.0	, Q	.0	10	. 0
ŝ.	€.	ŧ	-277.	-258,	1.7	ż	· ť	¥	.0	.0	.0	. (Ü	.0		. (
7	ų.	*	-314.	-113.	: , ;	*	. ĉ	x	.0	,0	. 9	4.2		. 3	13	
ξ.	8	*	-251	-66.	1.5	*	, e	*	ŗ	.0	. (÷	é		, Č	.0	.0
Ĵ,	9	*	-191.	17.	: : :	Ŕ		,	45	.0	.0	. 2	. 1	.9	.3	•
10.	16.	×	-41,	168.	• • •	ĭ	. ;	¥	.0	.0	. 2	.0	.ĉ	• :		<u>^</u>

I. SITE VARIABLES

U = 1.0 M/S	05AS = (0)	VS = .0 CM/S	· / = 80. MINETES	MIXE = 1000. M
BRG = 1 LEGHERY	Z6 = 108. OM	VD = TXXX	AME = PPM	

111. ADDDOTOR LOCATIONS AND MODEL RESULT

	ŧ	, ,			* + AMB *				(PPM)						
1 38970R	*	X	Ÿ	2	* *-	(PPW)	* -*	¥	ä	C	D	Ē	ľ	G	H
1. 1	*	469.	180.	1.5	¥	. 2	ŧ	. 2	.0	.0	.0	.0	.0	.0	.0
2. 2	×	418.	-9,	1.5	¥	.0	*	. e	.0	.0	. 0	.0	.0	.0	.0
3. 3	*	191.	-55.	1.5	*	.0	¥	,0	.0	.0	.0	.0	.0	.0	.0
4. 4	‡	29.	-207.	1.5	*	, ()	*	.0	.0	, f	.0	.(-	.(.0	.0
5. 5	*	-34,	-175.	1.5	*	.0	×	.0	.0	.0	.Û	.0	, Û	.0	.0
6.6	*	-277.	-255.	1.5	*	.0	*	.0	.0	.0	.Ĉ	.0	.0	.0	. 0
7. ?	*	-314.	-119	1.5	¥	, 5	¥	.0	i ĝ	.0	4	. 2	.0	.0	.0
8. 6	*	-251.	-66,	: . E	* .	. 5	Ť	.0	.0	.0	. 4	, 1 , 1	.0	. 0	.0
9. 9	*	-181.	17.	1.5	*	, ;	İ	.0	.0	. Ú	. 2	• -	. 0	.0	.0
10. 10	*	-41.	105.	1.5	ķ	. 3	¥	.0	.0	. 2	.0	.0	, i	.0	.0

5 = 1.0 M/S	324S = (4 (0)	VS = .0 CM,	S ATIM = 60. MINUTES	MINE = 1111, W
ERG = 140. DEGREES	108. GM	VE = .0 CM/	'S AME = .C PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	x x *	000F	EDINATES (K) Z	ż	POTAL + AKE (PPM)	Ŧ	Å	E	¢.	(p)	PM:	£.	G	., A
		x							•							
1.	*	*	489,	180.	1.5	ź	. 3	*	. 2	.0	.0	.0	.0	.0	.0	.0
2.	2	1	418.	-9.	1.5	*	.0	*	.0	.0	.0	.0	.0	, Ç	.0	. (
3.	5	*	191.	-55,	1.5	*	.0	*	.0	.0	. 0	.0	.0	.0	.0	.0
4.	4	* .	29.	-207]	1.5	*	.0	×	.0	.0	.0	.0	.0	.0	.0	. 0
5.	5	*	-34.	-:75.	1.5	*	.0	*	.0	.0	.0	, 0	.0	.0	.0	.0
Ĝ.	6	ż	-277.	-255.	1.5	×	.0	*	.0	, C	.0	4.0	.0	.0	.0	.0
7.	?	*	-314.	-119	1.5	x	.6	*	.0	.0	, 0	. 4	. 2	.0	.0	.0
٤.	8	*	-251.	-66.	1.5	x	. 4	Ż	Û	, (j	.0	. 3	4.4	.0	ı Ĉ	. (;
ā.	9	x	-181.	17.	5	¥		*	.0	.0	.0	. 2		.0	. 0	.0
10.	10	¥	-41,	108.	1.5	Ż	. 3	Ż.	.0	.0	. 2	.0	.0	.1	.0	.0

I. SITE VARIABLES

I = 1.0 M/S	JUAS = 4 (D)	VS = 10 GM/S	ATIM = 60. MINUTES	MIXE = 1000. M
BRG = 150. DEGREES	Z0 = 108. OM	VD = .0 CM/S	AKS = .0 PPK	

	, x	a. 6 b									(D	nu:			
	¥	0003	DINATES (1	Υ.	ž	- 4XE	. *				1.2	θV			
RECEPTOR	x	Х	Ÿ		X X.	: PPK	± - *	£	Ĝ	Ĉ.	D	ŝ	?	ũ	ñ
• • •	×	483.	.50.		*	, {	x	3.	2			, 5		.6	
2. 2	¥	418.	- ĝ ,	:.:	7	.0	X .	, (13	.(, ;	.0	. (r.C
9. 0	ż	131.	- 55		*	.0	¥	18	.9			. ;		, 6	

4	1	29.	-207.	1.5	*	.0	‡	.0	.0	.0	.0	.0	.0	.0	.0
5	¥	-34,	-175.	1.5	*	. Û	*	.0	.0	, 0	.0	.0	. 0	.0	.0
б	1	-277.	-255.	1.5	¥	.0	*	.0	.0	.0	.0	.0	٠Û	.0	.0
7		-314.	-113.	1.5	*	.5	*	.0	.0	.0	. 4	. 1	.0	.0	.0
8		-251.	-66.	1.5	¥	, 5	*	.0	.0	. 0	. 3	. 2	.0	.0	.0
9	*	-181.	17.	1.5	×	. 3	*	, 0	.0	.0	. 2	, I	. 0	.0	.0
10		-41.	105.	1.5	*	. 3	ż	.0	.0	. 2	. C	.0	. 1	.0	.6
	5 6 7 8 9	5	5	5 * -34. -175. 6 * -277. -255. 7 * -314. -113. 8 * -251. -66. 9 * -181. 17.	5	5 * -34. -175. 1.5 * 6 * -277. -255. 1.5 * 7 * -314. -113. 1.5 * 8 * -251. -66. 1.5 * 9 * -181. 17. 1.5 *	5 * -34. -175. 1.5 * .0 6 * -277. -255. 1.5 * .0 7 * -314. -113. 1.5 * .5 8 * -251. -66. 1.5 * .5 9 * -181. 17. 1.5 * .3	5 * -34. -175. 1.5 * .0 * 6 * -277. -255. 1.5 * .0 * 7 * -314. -113. 1.5 * .5 * 8 * -251. -66. 1.5 * .5 * 9 * -181. 17. 1.5 * .3 *	5 * -34. -175. 1.5 * .0 * .0 6 * -277. -255. 1.5 * .0 * .0 7 * -314. -113. 1.5 * .5 * .0 8 * -251. -66. 1.5 * .5 * .0 9 * -181. 17. 1.5 * .3 * .0	5 * -34. -175. 1.5 * .0 * .0 .0 6 * -277. -255. 1.5 * .0 * .0 .0 7 * -314. -113. 1.5 * .5 * .0 .0 8 * -251. -66. 1.5 * .5 * .0 .0 9 * -181. 17. 1.5 * .3 * .0 .0	5 * -34. -175. 1.5 * .0 * .0 .0 .0 6 * -277. -255. 1.5 * .0 * .0 .0 .0 7 * -314. -113. 1.5 * .5 * .0 .0 .0 8 * -251. -66. 1.5 * .5 * .0 .0 .0 9 * -181. 17. 1.5 * .3 * .0 .0 .0	5 * -34. -175. 1.5 * .0 * .0 .0 .0 .0 6 * -277. -255. 1.5 * .0 .0 .0 .0 .0 7 * -314. -113. 1.5 * .5 * .0 .0 .0 .4 8 * -251. -66. 1.5 * .5 * .0 .0 .0 .2 9 * -181. 17. 1.5 * .3 * .0 .0 .0 .2	5 * -34. -175. 1.5 * .0 * .0 .2 .1 8 * -251. -66. 1.5 * .5 * .0 .0 .0 .2 .2 .2 9 * -181. 17. 1.5 * .3 * .0 .0 .0 .2 .1	5 * -34. -175. 1.5 * .0 * .0 <	5 * -34. -175. 1.5 * .0 * .0 <

U = 1.0 M/S	CLAS = 4 (D)	78 = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. W
BRG = 160. DEGREES	ZO = 108. CM	VD = .0 CK/S	WE = '8 bbk	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	22222222222222222222222222222222222222	* *	C00F	DINATES (K) _	¥.	TOTAL + AMB	¥			^	_	PK.	F	Ş	H
	RECEPTOR	* 	λ	1	2	ż .	(PPH)	. i	Å	b	Ç	Đ	S	ŗ	ıj.	a.
1	1	¥	489.	130.	1,5	×	. 6	×	. 4	.0	.0	.0	.0	.0	, r	. 2
2.	2	x	418.	-g.	1.5	¥	.0	*	.6	.0	.0	, ()	.0	.0	15	ı Ç
3.	3	Ż	191.	-55.	: .5	*	.0	×	, ĉ	.0	.0	.0	.0	.0	, 0	, ĵ
4.	4	×.	29.	-207.	1.5	*	.0	¥	.0	.0	.0	.0	.0	.0	. (.	.0
5.	5	±	-34.	-175.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0
€.	€	*	-277.	-255.	1.5	*	.0	*	, (°	.0	.0	.0	. (.Û	. (-	, Ü
7.	7	*	-314,	-113.	1.5	*	. 5	*	. ()	. 3	.0	. 4	, 1	.0	.0	.0
8.	8	*	-251.	-66.	1.5	*	, 4	*	.0	.0	.0	. 3	, 1	.0	.0	. (-
g,	9	Ż	-181.	17.	1.5	*	, 3	*	.0	.0	.0	. 2	• :	.0	.0	. ?
16.	10	Ż.	-41,	105.	1.5	¥	. ?	×	.0	.0	. 2	.0	ιĉ	.1	.0	.0

I. SITE VARIABLES

U = 1.0 K/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXE = 1000. H
BRG = 170. DEGREES	Zû = 108. CM	V0 = .0 CM/S	AMB = .0 FPM	

	RECEPTOR	X ž X	COOR X	DINATES (1 Y	() Z	ź	TOTAL + AME (PPM)	¥	Å	B	Ç	(P) D	E F	ŗ	ű	ä
i.	1	*	469.	180.	1.5	À	. 6	*	. 4	. 0	.0	. 3	.0	.0	.0	. 2
2.	2	ż	418.	- G ,	1:5	*	.0	×	.0	.0	.0	.0	.6	.(.0	0.
9.	:	*	191.	-55,	1.5	¥	. (x	.0	Û	.0	.)		.(.2	, Ç
4.	4	×	26.	-207.	1.5	¥	,(x	. (*	.(. (, Ç	, f	1	.0	.6
ξ.	<i>ξ</i>	Ŷ	-34,	175	1.5	ź		x	10		.0			15	1.0	1.0
ê.	€	Ý.	-277	-258.	1.5	×	.6	x	. (Ç	d	. (ζ, 1 V	. (. (. (
7.	4	Ż	-314,	-113	1.5	x	. ;	×	, ĝ	.0	.0	. 4		.0	.0	.0
8.	3	¥	~251,	-êê.	ī. Ē	ż	, 5	×	.0	, i.	.0	14	.1	.0	.0	, (:
9.		r	-181,	17	1.5	*	. :	*	. 9	. Û	. 0	. 2		J.O	. 3	.0

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. H
BRG = 180. DEGREES	20 = 108. CM	VD = .0 CM/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COOR X	DINATES (M : 2	*	TOTAL • AMB (PPM)	* *	¥	ñ	C	(P)	E E	ŕ	G	Ħ
1.	1	r	469.	180.	1.5	*	. ?	r	, 4	.5	A	.0	.0	. 0	, û	.:
2.	2	¥	416.	-9.	1.5	¥	.(i	×	.0	,0	, 0	,0		.0		ال.
9	3	*	191.	-55.	1.5	*	. 9	×	. 3	, Û	,0	, û		.0	.5	. 9
4	4	*	23.	-207.	1.5	*	.(×	.0	1	, ĉ	.0	, Ú	.(.0	.0
ξ.	5	¥	-24.	-175.	1.5	x	. 3	x	. ?	() ()	.0	ĵ.	.0		, (• •
Ĝ.	Ĉ	*	-277,	-255.	1.5	¥	, ()	Ż.	, [. A	.0	.0	.(.(. :	S
7		ż	-314.	-113.	1.5	×	. 4	*	. 0		.0	. 4	.0	, ĉ	. 6	.0
ŝ.	8	*	-251.	-6€.	1.5	¥	. 5	ż	Ů.	.0	.0	. 4	.:	, Ĉ	.0	.0
3.	9	*	-181.	17.	1.5	×	. 3	*	.(•	.0	.0	. 2	.:	. Û	.0	.0
10.	10	ż	-41.	105.	1.5	×	. 3	¥	.0	.0	. 2	.0	. 1	.0	.0	.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
	Z0 = 108. CM			

III. RECEPTOR LOCATIONS AND HODEL RESULTS

		* *	000 9	DINATES (K)	*	TOTAL + AMB	x				(P)	py;			
	RECEPTOR	*	X	Y	ņ	¥	(PPH)	*	A	В	9	D	Ε	ř.	ű	Ξ
	*	*	469,	180.	:.:	x	.5	×	, 4	, Ç	e • v	- Ši	24	, V	, 0	, (
2	2	r	418.	-9,	1 5	ż		*	.0	.0	. (.(. (0	, (.0
9.1	Š	×	191.	-55.	: 5	×	. 0	×	, ĉ	, 9	.0	.0	.0	. 0	.9	1.7
4.	4	*	29.	-20%.	5	¥	.0	*	, t	, e	.0	. (:	Ů,	, 6	. (, (
5.	5	¥	-34	-175.	1 F	×	13	×	.0	.0	. 3	.0	.ĉ	. 0	. 3	ı.C
ê.	Ê	ż	-227	-255.	1.5	¥	Û	¥	.0	.0	.0	.0	. (.	.0	, (:	Ç
?.	7	*	-314.	-113.	. 5	*	. 5	*	. 0	ıΰ	.Û	. 5	.0	. :	.0	
٤.	§	¥	-251.	-66.	115	*		*	.0	.0	.0	.4	.1	• (.0	.0
Ģ,	9	*	-181.	17.	1.5	¥	10	×	i Ĉ	.3	.0	.2		Ü	, Ĵ	, ĵ
	10	1	-41.	105.	1.5	x		Í	. ť	.(• 1	.:		. 6	.0

I. SITE VARIABLES

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		* *	C00F	DINATES (M }	*	TOTAL + AMB	*				(P.	PK)			
	RECEPTOR	*	X	Y	Z		(PPM)	*	A	В	C	D	E	F	G	H
1.	•	*	469.	180.	1.5	*	. 7	*	, 4	.0	.0	. 0	. 0	.0	.0	, 3
2.	2	‡	418.	-9.	1.5	*	.0	*	.0	. 0	.0	.0	.0	.0	C	.0
3.	9	¥	191.	-55.	1.5	¥	.0	¥	.0	.0	.0	.0	.0	.0	, (i	, 0
4.	4	*	29.	-207.	1.5	¥	.0	*	.0	.0	.0	.0	. (.0	.0	.0
5.	5		-34.	-175.	1.5	*	.0	*	.0	.0	.0	0	.0	.0	, Û	.0
б.	6	Ż	-277.	-255.	1.5	*	.0	¥	.0	.0	.0	.0	.0	.0	.0	.0
7.	7	*	-314.	-115,	1.5	x	. 4	x	. 0	, (.0	. 4	. ງ	. Û	.0	.0
8.	8	ż	-251.	-66.	1.5	Ż	. 4	*	,0	.0	.0	14	. (. (.0	.(
9.	9	¥	-181.	- 4	1.5	Ż	, 3	¥	,0	.0	.0	. 2	,1	Ú	.0	.0
10,	10	7	-41.	105.	5	×	. :	×	. (.0		. 1	. 1	.6	.0	.0

I. SITE VARIABLES

MIXH = 1000, M

III. BECEPTOR LOCATIONS AND HODEL RESULTS

		*	C001	RDINATES (K)		TOTAL					(P)	P# }			
	RECEPTOR	×	Χ̈́	y	Z	*	(PPM)	*	A	В	C	Ð	E	F	G	Ĥ
1.	1	*	469.	180.	1,5	*	. 6	*	. 4	.0	.0	.0	.0	,0	.0	. 2
2.	2	¥	418.	-9.	1.5	*	.0	*	.0	.0	.0	.0	. 0	.0	.0	.0
9 1	3	×	191.	-55.	1.5	¥	. 0	*	.0	.0	.0	. ()	.0	.0	.0	.0
4.		ż	29.	-207.	1.5	*	.0	*	, C	, 6	.0	.0	.0	. (, Ĉ	.0
5.	5	ż	-34.	-175.	1.5	*	.0	*	.0	.0	.0	. 0	.0	.9	.0	.0
£,	ĉ	*	-277.	-355.	1.5	*	, Ç	×	.0	.0	.0	.0	.0	.0	. (Û
	7	*	-314.	-113.	. 5	¥	. 4	*	.0	Į.	.0	. 4	.9	.0	.0	.Ĵ
٤.	ę	*	-251.	-66.	1.5	*	. 4	r	.0	.0	.0	. 4	.0	.0	.0	.0
9	9	*	-181,	17	1.5	*	. 2	×	.0	.0	.0	. 2	.0	.0	.î	9
1(,	-	×	-41,	105.	1.5	×	. 3	*	.0	.0	.0	. 2	.1	.0	.0	.0

. I. SITE VARIABLES

 3 = 1.0 M/S
 GLAS = 4 (D)
 VS = .0 CM/S
 ATIM = 60. MINUTES

 BRG = 220. DEGREES
 Z0 = 168. CM
 VD = .0 CM/S
 AME = .0 PPM
 MIXH = 1006, M

	* CÓORDINATES (u I	* TOTAL *		(q <u>)</u>	ł wa		
	* X Y	Z	* (bbR) *	A B	C D	E F	G H	
2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8 9. 9	* 469. 180. * 4189. * 19155. * 29207.	1.55565656		.4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .3 .0 .3	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.1 .1 .0 .0 .0 .0 .0 .0 .0 .0	
I. SITE VARIABLES								
U = 1.0 M/S . BRG = 280. DEGREES						723		MXXXX = 1000. M
III. RESEPTOR LOCATIONS	S AND MODEL RESULTS							
RECEPTOR		7	* (55K) *				S H	
1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8	19155. 29207. -34175. -277255. -314113.	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	* ,4 * * ,0 * * ,0 * * ,0 * * ,0 * * ,0 * * ,1 * * ,2 * * ,1 *	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .2	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0.	
I. SITE VARIABLES								
U = 1.0 M/S BRG = 240. DEGREES						res		MIXE = 1000. K
III. RECEPTOR LOCATIONS	AND MODEL RESULTS							
# # ##################################	COORDINATES (M)	ä	* (ppm) *		C E	7 : 	G B	

1.	1	*	469.	180.	1.5	*	. 6	‡	. 2	.1	. 0	.0	.1	1	.1	.0
2.	2	*	418.	-9.	1.5	*	.0	*	.0	.0	. 0	.0	.0	.0	.0	.0
3.	3	*	191.	-55.	1.5	*	.0	ŧ	.0	. 0	. 0	.0	.0	.0	.0	.0
4.	4	*	29.	-207.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0
5.	5	*	-34.	-175.	1.5	*	.0	¥	.0	.0	.0	.0	.0	.0	.0	.0
6.	6	*	-277.	-255.	1.5	*	.0	¥	.0	. 0	.0	.0	.0	.0	.0	.0
7.	7	*	-314.	-113.	1.5	*	.0	*	.0	.0	. 0	.0	.0	.0	.0	. 0
8.	8	*	-251.	-66.	1.5	*	.1	*	.0	.0	.0	.i	.0	.0	.0	.0
9.	9	*	-181.	17.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	. 0	.0
10.	10	*	-41.	105.	1.5	*	.0	*	.0	.0	Û	.0	.0	.0	. 0	. 0

U = 1.0 M/S CLAS = 4 (D) VS = .0 CM/S ATIM = 60. MINUTES MIXH = 1000. M BRG = 250. DEGREES Z0 = 108. CM VB = .0 CM/S AMB = .0 PPM

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		* *	C00B	DINATES (*	TOTAL + AMB	*		•	2		PK)	r	Δ.	tı
	RECEPTOR	* •	X	Y	Z	¥	(PPM)	_ ¥	A	B	С	D	E	F	G	H
1.	*	*	469.	180.	1.5	*	. 3	*	. 1	. 2	.0	.0	.0	. 0	.0	.0
2.	2	*	418.	-9.	1.5	ź	. 1	*	.0	.0	.0	.0	. 1	.0	.0	.0
3.	3	*	191.	-55.	1.5	¥	.1	*	.0	.0	.0	Û	. 1	.0	.0	.0
4.	4	*	29.	-207.	1.5	*	.0	¥	.0	.0	.0	.0	.0	.0	.0	.0
5.	5	*	-34.	-175.	1.5	*	.1	*	. 0	.0	.0	.0	.1	.0	.0	.0
6.	6	*	-277.	-255.	1.5	¥	.0	*	.0	.0	.0	. Û	.0	.0	.0	.0
7.	?	*	-314.	-113.	1.5	*	.0	*	Ů.	.0	.0	.0	.0	.0	. 0	.0
8.	8	*	-251.	-66.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0
9.	9	İ	-181.	17.	1.5	*	.0	*	.0	.0	.0	. 0	.0	.0	.0	. 0
10.	10	*	-41.	105.	1.5	¥	.0	*	.0	.0	.0	.0	.0	.0	·Û	.0

I. SITE VARIABLES

	* *	COOF	lDINATES (1	K)		TOTAL + AMB					(P)	PM)			
RECEPTOR	Ť ù	X	Y	Z		(PPM)		À	В	C	D	E	P	G	H
1. :	x	469.	180.	:.5	*			.0	.1	. Û	. 9	, 6	.0	.0	. 0
2. 2	*	418.	-9.	1.5	×	. 2	*	.0	.0	.0	. 0	, î	.1	.0	.0
3. 3	ź	191.	-55.	1.5	¥	. 4	ķ	.0	ıê	.0	+ 1	. 5	. 1	.0	.0
4, 4	Ż.	29.	-207.	1.5	*	. 1	ķ	.0	.0	, (°	. 0	1.1	.0	, ĉ	. (;
5. 5	*	-34.	-175.	:.:	¥	. 2	¥	.0	. Û	. 0	. 9	. 5	.0	.Û	.0
6. 6	*	-277	-255,	1.5	×	, G	*	.0	.0	.0	.0	.0	.0	.0	0

7. 7	*	-314.	-113.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0
8. 8			-66.												
9.9	*	-181.	17.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	. 0
10. 10	*	-41.	105.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 60. KINUTES	MIXH = 1000. M
BRG = 270. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AME = .0 PPK	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	COOR X	DINATES (K) Z	ķ	TATOT • AMB • (PPH)	Ż	Å	ğ	С	(P)	E E	F	G	E
	1	x	469.	180.	1.5	*	.0	*	, 6	. 0	, 0	.0	.0	.0	.0	.0
2.	2	*	418.	-\$.	1.5	×	. 2	*	.0	.0	.Ĉ	0,	.0		.1	.0
Ś.	:	¥	191.	-55.	5	¥	. 0	×	.)	.0	.0	. :	.1	. 1	.0	.0
4.	4	¥	20.	-201.	1.5	¥		*	, (.0	.0	.0	. !	, 0	. (-	.0
ŧ.,	ў, V	*	-34.	-175.	1.5	*	. 2	*	.0	.0	.0	.0	. 2	.0	.0	, Ç
ê.	€	*	-277.	-255.	1.5	*	.0	ż	.0	.0	.0	• û	.0	.0	, Û	.0
ę,	7	*	-314.	-113.	1.5	¥	. 9	*	.0	. Û	, 0	ų.	.0	.0	٠,0	.0
٤,	8	ž	-251.	-66.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0
9.	ç	*	-181	17.	1.5	*	.0	×	.0	. ()	.0	, 0	, (:	.0	. Û	.0
:0.	10	×	-41,	105.	1.5	x	.0	×	.0	.0	.0	.0	.0	.0	.0	.0

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIM = 80. MINUTES	MIXE = 1000. M
BRG = 280. DEGREES	Z0 = 108. CM	VD = .0 CK/S	AME = .0 PPM	

		x x	0001	ULIKATES (TOTAL		{ PPM }									
	RECEPTOR	*	χ	Y	Z.	*	(PPM)	. ¥	ŕ.	Ē	Ç	D	E	Ŗ	ű	Ë	
	1		469.	180.	1,5	*	.0	ż	.0	, 6	, ΰ	, ()	.0	.0	n. L v	. 0	
2,	2	×	418.	-9.	1.5	Ý		×	.0	.0	1	C	.0	.0	. 3	.0	
	:	*	191.	-55,	1.5	*	. 3	*	.0	. ()	.0		.0	. 2	. 0	.0	
4.	4	*	29.	-207.	1.5	*		¥	.0	.(.0	.0		.0	, Ģ	.0	
ξ.	Ď	¥	-34.	-175.	1.5	*	. (x	. Û	.0	.0	1.4	. 2	.0	.0	. ĵ	
ĉ,		¥	-277.	-285.	1.5	¥	,6	×	.0	Ţ	.0	.0	.0	.0	.0	÷	
?.	7	x	-214.	-110.		ž.	.9	x	. ()	. 9	.0	.0	. 0	.0	. Ú	,)	
£ ,	g	*	-251,	~66.	: . 5	¥	. (*	. (:	.0	, ĉ	. 0	.0	٥.	.0	.0	
g,	9	ı	-181.	-1.	1.5	ġ.	. :	¥	.5	.0	.0	.0	.0	.0	1. d	, 9	
÷.	10	*	-41.	100.	1.5	*	.0	×	. C	.0	. 0	.0	.0	.0	.0	. (

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CH/S	ATIM = 60, MINUTES	MIXH = 1000. H .
BRG = 290. DEGREES	20 = 108. CH	VD = .0 CH/S	AMB = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

							LATOT ENA +			(PPK)							
1	RECEPTOR	*	X	Ÿ	7.		(PPM)		Å	ŝ	C	Đ	55	F	G	ä	
1.	 1	*	469.	180.	1.5	*		x	.0	.0	.0	.0	.0	.0	. 0	.0	
2. 2	2	*	418.	-9.	1.5	¥	. 4	Ż	.0	.1	.0	.0	.0	.0	. 3	Æ	
3. 3	3	*	191,	-55,	1.5	¥	13	x	.0	į Ç	. 1	.0	.0	. 2	. 0	. 9	
4.4	4	7	29.	-207.	1.5	¥	. 2	x	.(.0	.0		.1	. (. ()	, (
Į., į	5	1	~34.	- 1 # F .	1.5	¥	. 3	*	. (.0		1 1	. 2	, ĝ	Û	Ţ,	
6.6	ŝ	¥	-277.	-255.	1.5	¥	.0	#	.0	. (15	, Û	, C	.0	0	.0	
7. 7	7	x	-314.	-113.	1,5	x	, É	ż	. 9	.0	.0	ņ	.9	S.	Ç.	.3	
ξ. 8		ź	-251.	-6ê.	1.5	ż	. 0	*	.0	.0	ĵ.		.0	, f	Ċ	.0	
9. 9	}	x	-181.	17.	1 5	¥	.)	x	, 5	, û	.0	.0	.9	.0	G.	. 0	
10. 1		r	-41.	105.	1.5	¥	.0	¥	.0	.0	٠Û	.0	.0	, Ĉ	.0	. (-	

I. SITE VARIABLES

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CH/S	ATIM = 60. MINUTES	MINE = 1000, W
BRG = 300. DEGREES	ZO = 108. CM	VD = 1.0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* * *	C00F	LDINATES (M } Z	* *	TOTAL + AME (PPM)	*	Å	В	C	(P)	P K) B	P	G	H
		x	469.	130.	1.5	¥. ¥	.0	- X - X	ı, Ç	.0	.0	.0	.0	, 3	Ĵ	.5
2.	2	*	418.	-9.	1.5	*		ķ	.0	.1	.0	.0	.0	.0	. 2	
3.	3	× ×	191,	-55,	1.5	*		*	.0	٠,٥	1.4	.0	.0		Ą	.0
4.	′ 2	*	29,	-201.	:.8	*	. Ž	*	î.	, ĉ	, Ĉ	, ;	, i	. (.(.Ĉ
ξ,	5	¥	-34,	-175.	1.5	ķ	. 3	*	.0	.0	.0	• •	, 2	.9	, 0	.0
€.	f	*	-277	-255,	1.5	ź	.0	×	.0	.0	.t	, (,0	.0	.0	1.0
7.	7	*	-314,	-113.	1.5	*	.0	×	.5	.0	.0	.0	.0	.0	.0	ιô
٤.	g.	*	-261.	-66.	1.5	×	, (¥	, e	, Ç	, ()	. (.0	.0	.0	æ
9.	ŷ	¥	-181.	17.	1.5	¥	, û	¥	. 3	.0	.0	.0	θ,	* \$. 3	, A
10.	1ê	*	-41.	105.	1.5	*	.(x	.0	i.C	.(ŗÇ	ŧ.	.(i č	.0

I. SITE VARIABLES

U = 1.0 M/S	$CLAS = \{ \{0\} \}$	VS = .0 CM/S	ATIM = 60. MINUTES	MIXH = 1000. M
REG = 310, DEGERRS	ZO = 108. CV	VD = .0 0M/S	AME = 10 DBM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		*	COOR	DINATES (K)		TOTAL + AME					(P	PK)			
	RECEPTOR	*	X	Y	Z	*	(PPM)	*	Å	В	C	D	E	F	G	H
1.	1	*	469.	180.	1.5	• *	.0	*	.0	.0	.0	.0	, 0	ů,	, í	.0
2.	2	*	418.	-9,	1.5	*	. 5	*	.0	. 1	.0	.0	.0	.0	. 2	. 2
3.	3	*	191.	-55.	1.5	*	. 3	*	.0	.0	. 1	.0	. 0	. 2	.0	.0
4.	4	*	29.	-207.	1.5	*	. 2	¥	.0	.0	.0	.1	, 1	Ĵ	.(,Ĉ
5.	5	*	-34.	-175.	1.5	¥	, č	*	.0	. 0	. 0	. 1	. 2	.5	,0	,0
6.		×	-277.	-255,	1.5	*	. 0	¥	.0	.0	.0	, Ç	.0	, (.0	1.0
7.		*	-314.	-113.	:,5	×	.0	Ì	.0	, 0	. 0	.0	.0	Ů.	1.2	49
g.	8	*	-251.	-66.	5	*	.0	ź	.0	.0	, û	.0	, (r	.(-	. (.0
9.	9	T.	-181.	17	1.5	*	.0	×	.0	.9	. 0	.0	.0	. ()	.0	. 9
10.	10	×	-41,	105.	1.5	×	,¢	¥	. Ĉ	.0	. 0	,0	. 0	, (.	.6	, Û

I. SITE VARIABLES

J = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/S	ATIN = 60. MINUTES	MIXH = 1000. M
BRG = 020. DEGREES	Z0 = 108. CM	VD = .0 CM/S	AME = .0 PPM	

III. RECEPTOR LOCATIONS AND MODEL RESULTS

		* *	COOR	DINATES (K }	¥	TOTAL + AMB	×				(P	PK }			
	RECEPTOR	* ¥	X	Ÿ	2	* *.	(PPM)	*	A	В.	C	D	E	F	G	H
1.	1	*	469.	180.	1.5	*	.0	*	.ņ	.0	Ŋ	ıû	.0	. ŷ	.0	.0
2.	2	x	418.	- Ç ,	1.5	¥	, £	¥	.0	. 1	.0	.0	.0	, Û	. 1	. 3
3.	3	*	191.	-55.	5	¥	. 3	*	. 0	.0	.1	.0	.0	. 2	.0	.0
4.	4	×	29.	-207.	1.5	*	. 2	*	.0	. (;	.0	ţ	.1	. 0	.0	, Ú
δ.	5	*	-34.	-175.	1.5	*	. 3	*	.0	.0	. 0	. 1	. 2	.0	.0	.0
6.	€	×	-277,	-255.	1.5	*		*	. C	.0	.Û	.0	. 1	.C	.0	.0
7	7	¥	-314,	-113.	1.5	ż	.0	*	.0	.0	.0	.0	, 0	. Û	. 0	.0
8.	8	*	-251.	-66.	1.5	*	.0	*	.0	·Û	.0	.0	, C	.0	.0	.0
9.	9	*	-181,	17.	1.5	*	.0	*	. 0	.0	.0	, 0	" ij	.0	.0	.0
10.	10	Ý	-4.	108.	1.5	Ż	.0	Í	·Ĉ	.0	.0	.0	.0	.0	.0	.0

I. SITE VARIABLES

U = 1.0 M/S	GWAS = 4 (D)	VS = .0 CH/S	ATIN = 60. MINUTES	MIXE = 1000. M
sec = 936 argueus	70 ± 108. CM	VB = .6 0M/S	AMP = .6 PPM	

	*	COOF	RDINATES (M)	*	+ AMI	} *				(P	PH)			
RECEPTOR	‡	X	Y	. Z		(PPK)	*	Å	B	C	D	Ē	F	G	H
1. 1	*	469.	180.	1.5	*	.0	*	.0	.0	.0	.0	. 0	.0	.0	.0
2. 2	*	418.	-9.	1.5	*	. 5	*	.0	.1	.0	. 0	.0	.0	.0	. 4
3. 3	*	191.	-55.	1.5	*	, 3	*	.0	.0	. 1	.0	, 0	. 1	. 1	. 0
4. 4	*	29.	-207.	1.5	Ż.	. 2	*	.0	.0	.0	. 1	. 1	.0	.0	.0
5. 5	*	-34.	-175.	1.5	*	. 3	*	. 0	.0	.0	.1	. 2	.0	.0	.0
6, 6	*	-277.	-255.	1.5	*	. 2	*	.0	. 0	.0	.1	. 1	.0	.0	. 0
7. 7	*	-314.	-113.	1.5	*	. 0	*	.0	. 0	.0	.0	.0	.0	.0	. 0
8. 8	*	-251.	-66.	1.5	*	.0	*	. 0	.0	.0	.0	.0	.0	.0	.0
g. g	*	-181.	17.	1.5	ŧ	0	*	.0	. 0	.0	. 0	0	.0	.0	. 0
10.10	*	-41.	105.	1.5	*	C	*	.0	. 0	. 0	.0	. 0	, û	.0	.0

III. RECEPTOR LOCATIONS AND MODEL RESULTS

	RECEPTOR	* *	C00F	DINATES (K) Z	±	(PPM) + AKE TOTAL	¥	k	В	Ĉ	(P	PW) E	p	G	ii
~==	nlowrion		^ 	:		*.	irrnj		'n	D	U	Ü	L	:	Ü	::
1.	:	×	469.	180.	1.5	ŧ	.0	*	.0	.0	.0	.0	.0	.0	.0	.0
2.	2	×	418.	-9.	1.5	*	.7	*	.1	.1	.0	. (.0	.0	.0	.5
3.	3	*	191.	-55.	1.5	*	. 2	Ì	. 0	.0	.0	.0	įΰ	.0	. 2	.0
4.	4	*	29.	-207.	1.5	*	.1	*	.0	.0	.0	.0	.1	.0	.0	.0
5.	5	×	-34.	-175.	1.5	*	. 3	*	.0	.0	.0	.1	. 2	. 0	.0	.0
î.	ĉ	*	-277.	-255.	1.5	*	, 4	×	.0	.0	.0	. 1	. 3	.0	.0	.0
7.	7	*	-314.	113.	1.5	Ż	.0	*	.0	.0	.0	.0	.0	Ĉ	.0	, Ç
٤.	8	x	-251.	-66.	1.5	¥	.0	¥	.0	.0	.0	.0	.0	.0	.0	. Û
9.	g	x	-181.	17,	1.5	*	.0	*	.0	.0	.0	.0	.0	. 0	.0	.0
10.	10	*	-41.	105.	1.5	*	.0	*	.0	. 0	.0	.0	. Û	.0	.0	.0

I. SITE VARIABLES

	*				¥	TOTAL	¥									
	ž.	COOR	DINATES (.	K 3	*	+ AMB	×				(P)	py:				
RECEPTOR	İ.	Х	Ÿ	2	* •	(PPM!	Ý.	Å	3	C	Ĵ	5	F	Ĝ	1	
i. 1	ż	469.	180.	1.5	ż	.0	ž.	.0	.0	.0	Ü	.0	0	. 3	į ą	
2. 2	*	418.	-9,	1.5	Ź	. 7	x	2	.0	.0	0	.0	.0	.0	. 5	
2. 2	*	191.	-55.	4.5	*	. 3	*	.0	. 1	.0	Û	.0	.0	2	.0	

4. 4	*	29.													
5. 5	*	-34.	-175.	1.5	*	. 2	*	.0	. 0	.0	.0	. 2	.0	. 0	.0
6.6	*	-277.	-255.	1.5	*	. 5	*	.0	.0	.Û	.1	. 4	.0	.0	. 0
7. 7	*	-314.	-113.	1.5	*	. 0	*	.0	.0	.0	.0	.0	.0	.0	. 0
8. 8	*	·-251.	-66.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0
9, 9	*		17.												
19. 10	*	-41.													

U = 1.0 M/S	CLAS = 4 (D)	VS = .0 CM/	S ATIM = 60. MINUTES	MIXH = 1000 H
BRG = 360. DEGREES	20 = 108. CM	VD = .0 CM/	S AME = .C PPM	

	*	C 0(ORDINATES (K)			TOTAL + AMB					(P.	iΚ.)				
RECEPTOR	×	Х	Ÿ	'n	*	(PPM)		ħ.	В	0	Σi Σ	E	F	û	H	
1, 1	*	469.	180.	1.5	*-*-		*	.0	.0	,)	ΑN	.0	ر ر	.9	.0	
2. 2	*	418.	-9,	1.5	x	. ?	*	.2	.0	.0	.0	.0	. 6	. ()	.5	
3, 3	*	191.	-55.	1.5	*	. 2	*	.0	.:	.0	.0	.0	.0	.3 -	.0	
4. 4	*	26.	-207.	1.5	¥	. 2	*	.0	.0		.0	.0	.1	. 6	.0	
5. 8	*	-34.	-175.	1.5	*	. 3	*	.0	. 0	. 1	.0	. 2	.0	.0	. 0	
€. 6	*	-277.	-255.	1.5	*	. 6	×	.0	.0	.0	.1	.5	.Ç	, Ç	.0	
7 M	*	-314.	-113.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0	
8.8	*	-251.	-66.	1.5	¥	.0	*	.0	.0	.0	.0	.0	.0	.0	.0	
9. g	*	-181.	17.	1.5	*	.0	*	.0	.0	0	, 0	.0	. Û	, (c	.9	
10. 10	×	-41,	105.	1.5	*	.0	*	.0	.0	.0	.0	.0	.0	.0	.0	
H. T275 ER LOCAL SEG4	*	366.	46. 530.	5 (). *		165		88	}.	PL	379	7.	11.9	7.6	24.4

```
MOBILE5a (26-Mar-93)
 OI/M program selected:
                                   1991
     Start year (January 1):
                                    20%
     Pre-1981 MYR stringency rate:
     First model year covered:
                                    1975
                                    2020
     Last model year covered:
     Waiver rate (pre-1981):
                                    20.%
     Waiver rate (1981 and newer):
                                   20.%
     Compliance Rate:
                                   90.%
                                   Test Only
     Inspection type:
     Inspection frequency
                                   Annual
     Vehicle types covered:
                                   LDGV - Yes
                                   LDGT1 - Yes
                                   LDGT2 - Yes
                                   HDGV - No
    1981 & later MYR test type: Idle
    Cutpoints, HC: 220.000 CC: 1.200 NOx: 999.000
CTAMPA FL
                   Minimum Temp: 50. (F) Maximum Temp: ?0. (F)
                  Period 1 RVP: 10.5 Period 2 RVP: 9.0 Period 2 Vr: 1992
Office-nethane HC emission factors include evaporative HC emission factors.
Obmission factors are as of Jan. 1st of the indicated calendar year.
@Cal. Year: 2010
                Region: Low Altitude: 500. Ft.
                                      Ambient Temp: 52.0 / 52.0 / 52.0 F
                   I/M Program: Yes
              Anti-tam. Program: No . Operating Mode: 20.6 / 27.3 / 20.6
               Reformulated Gas: No
Ovet. Type: LOGY LDGT1 LDGT2 LDGT HDGY LDDY LDDT HDDV MC All Veh
                              5,0 5.0 5.0 5.0 5.0
 Veh. Spd.: 5.0 5.0 5.0
  VMT Mix: 0.590 0.201 0.088
                                   0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)
 No-Mth HC: 4.83 6.28 8.73 7.03 8.74 6.91 1.25 3.87 7.74 5.51
 Exhst CC: 56.13 66.44 89.51 78.47 71.14 3.69 4.11 29.16 106.41 59.48
 Exhat NOX: 1.75 2.10 2.96 2.36 3.61 1.67 1.90 10.89 0.95 2.71
Emission factors are as of Jan. 1st of the indicated calendar year.
                Region: Low Altitude: 500. Ft.
OCal. Year: 2010
                                     Ambient Temp: 52.0 / 52.0 / 52.9 F
                  I/M Program: Yes
              Anti-tam. Program: No. Operating Mode: 20.6 / 27.3 / 20.8
              Reformulated Gas: No
OVeh. Type: LDGV LDGT1 LDGT2 LDGT HDGV LDDV LDDT HDDV MC All Veh
                              6.0 6.0 6.0 6.0
Vel. Spd.: 6.0 6.0 6.0
  VMT Mix: 0.590 0.201 0.088
                                   0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)
 No-Mth HC: 4.12 5.36 7.44 5.99 7.86 0.87 1.19 3.68 6.75 4.74
 Exhat CO: 48.75 57.95 78.00 64.06 65.29 3.42 3.86 26.97 88.79 51.96
 Exhst NGX: 1.68 2.02 2.84 2.27 3.64 1.61 1.82 10.46 0.92 2.60
Obmission factors are as of Jan. 1st of the indicated calendar year.
               Region: Low Altitude: 500, Ft.
GGal. Year: 2010
                                    Ambient Temp: 52.0 / 52.0 / 52.0 P
                   I/M Program: Yes
                                 Ambient Temp: 52.0 / 52.0 / 52.0
Operating Mode: 20.6 / 27.3 / 20.6
             Anti-tam. Program: No
              Reformulated Gas: No
Oven, Type: ADDV ADST1 ADST2 ADST HDGV ADDV ADDT HDGV MC All Veh
```

Veh. Spd.: 7.0 3.0 7.0

ITIS BA EMISSION FACTORS

7.0 7.0 7.6 7.0 7.0

VMT Mix: 0.590 0.201 0.088 OComposite Emission Factors (Gm/Mile)	0.032 0.002 0.003 0.079 0.005
No-Mth RC: 3.63 4.71 6.54 5.27	7.15 0.83 1.14 3.51 6.00 4.21
	60.04 3.17 3.52 24.99 75.53 46.52
	3.68 1.55 1.75 10.06 0.90 2.52
BANGO NORT 1100 1100 2170 2700	
OBmission factors are as of Jan. 1st of	
OCal. Year: 2010 Region: Low	Altitude: 500. Ft.
I/M Program: Yes	Altitude: 500. Ft. Ambient Temp: 52.0 / 52.0 / 52.0 F
Anti-tam. Program: No	Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	
4	HDGV LDDV LDDT HDDV MC All Veh
Veh. Spd.: 8.0 8.0 8.0	8.0 8.0 8.0 8.0
VMT Mix: 0.590 0.201 0.088	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
No-Mth HC: 3.30 4.27 5.91 4.77	6.60 0.79 1.08 3.34 5.41 3.84
Ryhet CO: 29 E2 27 25 E2 E1 E2 20	KK 34 9 Q4 3 27 23.20 25.35 42.38
Exhst NOX: 1.59 1.91 2.69 2.15	3.72 1.49 1.69 9.69 0.68 2.46
GEnission factors are as of Jan. 1st of	the indicated calendar year.
OSal. Year: 2010 Region: Low	Altitude: 500. Ft.
I/M Program: Yes	Ambient Temp: E2.0 / E2.0 / E2.0 F
Anti-tam, Program: No	Altitude: 800. Pt. Ambient Temp: E2.0 / E2.0 / E2.0 F Operating Mode: 20.8 / 27.8 / 20.8
Reformulated Gas: No	
OVeb. Type: LDGV LDGT: LDGT2 LDGT	HDOV LDDV LDDT HDDV KC All Veh
Veh. Spd.: 10.0 10.0 10.0	10.0 10.0 10.0 10.0 ic.0
Veh. Spd.: 10.0 10.0 10.0 VMT Kix: 0.590 0.201 0.088	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
No-Mth HC: 2.85 3.66 5.05 4.08	5.67 0.72 0.99 3.04 4.57 3.81
Exhst CO: 33.99 40.98 54.98 45.25	47.33 2.55 2.83 20.11 51.12 36.50
Exest NOX: 1.54 1.85 2.61 2.08	5.67 0.72 0.99 3.04 4.57 3.31 47.33 2.55 2.83 20.11 51.12 36.50 3.79 1.39 1.57 9.03 0.86 2.36
OBmission factors are as of Jan. 1st of	the indicated calendar year.
OCal. Year: 2010 Region: Low	Altitude: 500. Pt.
I/M Program: Yes	Ambient Temp: 52.0 / 52.0 / 52.0 F
Anti-tam, Program: No	Operating Kode: 20.6 / 27.3 / 20.8
Reformulated Gas: No	
	HDGV LDDV LDDT HDDV MC All Veh
Veh. Spd.: 15.0 15.0 15.0 VMT Mix: . 9.590 0.201 0.088 OComposite Emission Pactors (Gm/Mile)	15.0 15.0 15.0 15.C 15.C
VMT Mix: . 9.590 0.201 0.088	0.032 0.002 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	
No-Mth HC: 2.20 2.83 3.88 5.18	4.06 0.58 0.79 2.44 3.48 2.57 33.27 1.84 2.04 14.51 33.20 28.44 3.97 1.19 1.35 7.77 0.88 2.19
Exhst CG: 26.61 32.49 43.47 35.84	33.27 1.84 2.04 14.51 33.20 38.44
Exhst NOX: 1.47 1.76 2.49 1.98	3.97 1.19 1.05 7.77 0.88 2.19
Office of San San San San San San San San San San	the indicated calendar year.
OCal. Year: 2010 Region: Low	Altitude: 500, Ft.
I/M Program: Yes	Ambient Temp: 52.0 / 52.0 / 52.0 F
Anti-tam. Program: No	Altitude: 500. Ft. Ambient Temp: 52.0 / 52.0 / 52.0 F Operating Mode: 20.6 / 27.3 / 20.6
Reformulated Gas: No	
(Veh. Type: LDGV LDGT1 LDGT2 LDGT	
Veh. Spd.: 16.0 16.0 16.0	16.0 16.0 16.0 16.0 16.0
Veh. Spd.: 16.0 16.0 16.0 VMT Mix: 0.590 0.201 0.088 GComposite Emission Factors (Gm/Mile)	0.032 0.902 0.003 0.079 0.005
OComposite Emission Factors (Gm/Mile)	•
No-Mth HC: 2.16 2.72 0.74 3.03 Exhst CO: 25.69 31.43 42.03 34.66	3.82 9.55 0.76 2.34 3.36 2.48
Exhst CO: 25.69 31.43 42.03 34.66	81.21 1.73 1.92 13.67 31.11 20.41

				1.97						
OEmission f										
OCal. Year:	2010		Regio	on: Low		Alti	.tude:	500. Pt	. 1	
		I/N	Progra	am: Yes	A	mbient	Temp:	52.0 /	52.0	/ 52.0
	Ar	nti-tam. Reformul	Progra	am: No	0pe	rating	Mode:	20.6 /	27.3	/ 20.6
OVeh. Type:					HDGV	PDDA	LDDT	HDDV	KC	All Ve
t Veh. Spd.:	20 0	20.0	20.0		20.0	20 6	20.0	20.6	30 0	
ven. Spa.:	40.0	40.0	40.0		0.000	0.000	6 0 0 0	40 (U . ለ 878	0.00	
VMT Mix: OComposite 1					0.032	U.UUZ	9,092	0.019	0.00	2
No-Mth HC:					2 00	0.47	0 65	2 00	9 0 0	9 16
NOTHUL HOL	1.70	ው ነ ዕዕ ስክ ርሳ	9140	9A CO	910:	1 26	1 5.5	15 00	27 01	99 07
Exhst CO: Exhst NOX:	1 44	1 79	01.11	1 02	31.8	1.05	1.04	£ 99	44.50	2.10
EXHST NUA:	1,94	1.14	2,42	1.00	4.10	i.00	1 + 5 1		V 1 J 0	MI L
CEmission fa										
OCal. Year:	2010		Regio	n: Low		Alti	tude:	500. Ft		
		I/K	Progra	เธ: Yes	A	mbient	Temp:	52.0 /	52.0	[2.0]
				n: No	0pe	rating	Mode:	20.6 /	27.3	20.6
		eformul								
OVeh. Type:										
t Veh. Spd.:	25.0	25.6	35.1		25.6	25.0	25.0	25.0	35.6	
VMT Hix:	0.598	0.201	0.369		0.032	0.002	5.002	0.079	0.005	
OComposite F					2.44011		51V V V	.,		
No-Mth HC:					2.44	0.40	6.54	1.68	2.68	1.80
Exhat CO:	17 10	91 77	20 10	20 00	10 90	1 10	1 23	9 66	10 96	18.49
Exhat NCX:										
		are as	of Jan.	1st of	the in	dicated	calend	ar year		
OEmission fa OCal. Year:	2010	are as	of Jan. Regio Progra	1st of n: Low n: Yes	the in	dicated Alti abient	calend tude: Temp:	ar year 500. Ft 52.0 /	52.0 /	52.0 F
	2010 An	are as : I/N ti-tam.	of Jan. Regio Progra Progra	1st of n: Low m: Yes m: No	the in	dicated Alti abient	calend tude: Temp:	ar year 500. Ft 52.0 /	52.0 /	52.0 F
OCal. Year:	2010 An R	are as : I/N ti-tan. eformula	of Jan. Regio Progra Progra	Ist of n: Low m: Yes n: No s: No	the inc	dicated Altivablent 'rating !	calend tude: Temp: Mode:	ar year 500. Ft 52.0 / 20.6 /	52.0 / 27.3 /	52.0 F
OCal. Year: OVeh. Type:	2010 An R LDGV	I/M ti-tan. eformula	of Jan. Regio Progra Progra ated Ga LDGT2	lst of n: Low n: Yes n: No s: No LDGT	the inc	dicated Alti abient ' rating !	calend tude: Temp: Mode:	ar year 500. Ft 52.0 / 20.6 /	52.0 / 27.3 /	52.0 F
OCal. Year: OVeh. Type: + Veh. Spd.:	2010 An R LDGV 30.0	I/M ti-tan. eformula LDGT1	of Jan. Regio Progra Progra ted Ga LDGT2	lst of n: Low m: Yes m: No s: No LDGT	the income Arroper HDGV	dicated Altiinbient rating ! LDDV 30.0	calend tude: Temp: Mode: LDDT	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0	52.0 / 27.3 / KC 30.0	52.0 F 20.6 All Veh
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Nix:	2010 An R LDGV 30.0 0.590	I/M ti-tan. eformula LDGT1 30.6 0.201	of Jan. Regio Progra Frogra ated Ga LDGT2	Ist of n: Low m: Yes m: No s: No LDGT	the incorporate the incorporat	dicated Altiinbient rating ! LDDV 30.0	calend tude: Temp: Mode: LDDT	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0	52.0 / 27.3 / KC 30.0	52.0 I 20.6 All Vei
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E	An R LDGV	I/N ti-tan. eformul: LDGT1 30.6 0.201 n Factor	of Jan. Regio Progra Frogra ted Ga LDGT2 30.0 0.088 rs (Gm/l	lst of n: Low n: Yes n: No s: No LDGT	the ind Open HDGV 30.0 0.032	dicated Altiphient rating ! LDDV 30.0 6.062	calend tude: Temp: Kode: LDDT 30.0	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079	52.0 / 27.3 / MC 30.0 0.005	52.0 F 20.6 All Ver
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC:	2010 An R LDGV 30.0 0.590 mission 1.36	I/N ti-tan. eformuli LDGT1 30.6 0.201 n Factor	of Jan. Regio Progra Frogra ated Ga LDGT2 30.0 0.088 rs (Gm/l 2.40	Ist of n: Low n: Yes n: No s: No LDGT	the ine Oper HDGV 30.0 0.032	dicated Altiphient rating! LDDV 30.0 6.062	calend tude: Temp: Mode: LDDT 30.0 0.003	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079		52.0 F 20.6 All Ver
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CO:	An R LDGV 30.C 0.590 mission 1.36	I/M ti-tan. eformuli LDGT1 30.0 0.201 n Factor 1.77 17.67	of Jan. Regio Progra Frogra ated Ga LDGT2 30.0 0.088 rs (Gm/) 2.40 23.72	Ist of n: Low m: Yes m: No s: No LDGT Kile! 1.96 19.52	the inc Oper HDGV 30.0 0.032 2.03 16.07	dicated Altiplication Altiplic	calend tude: Temp: Mode: LDDT 30.0 0.003	ar year 500. Ft 52.0 / 20.6 / HDDV 30.0 0.079		52.0 F 20.6 All Ver
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC:	An R LDGV 30.C 0.590 mission 1.36	I/M ti-tan. eformuli LDGT1 30.0 0.201 n Factor 1.77 17.67	of Jan. Regio Progra Frogra ated Ga LDGT2 30.0 0.088 rs (Gm/) 2.40 23.72	Ist of n: Low m: Yes m: No s: No LDGT Kile! 1.96 19.52	the inc Oper HDGV 30.0 0.032 2.03 16.07	dicated Altiplication Altiplic	calend tude: Temp: Mode: LDDT 30.0 0.003	ar year 500. Ft 52.0 / 20.6 / HDDV 30.0 0.079		52.0 F 20.6 All Veh
OCal. Year: OVeh. Type: Veh. Spc.: VMT Mix: OComposite E No-Mth HC: Exhst CC: Exhst NOX:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a	I/M ti-tan. eformula LDGT1 30.0 0.201 n Factor 1.77 17.67 1.74	of Jan. Regio Progra Progra ated Ga LDGT2 30.0 0.088 cs (Gm/l 2.40 23.72 2.45	lst of n: Low n: Yes m: No s: No LDGT 	the ind Oper HDGV 30.0 0.032 2.03 16.07 4.52	dicated Altiplient alt	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079 1.44 7.16 6.10		52.0 F 20.6 All Ver
OCal. Year: OVeh. Type: Veh. Spc.: VMT Mix: OComposite E No-Mth HC: Exhst CC: Exhst NOX:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a	I/M ti-tan. eformula LDGT1 30.0 0.201 n Factor 1.77 17.67 1.74	of Jan. Regio Progra Progra ated Ga LDGT2 30.0 0.088 cs (Gm/l 2.40 23.72 2.45	lst of n: Low n: Yes m: No s: No LDGT 	the ind Oper HDGV 30.0 0.032 2.03 16.07 4.52	dicated Altiplient alt	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079 1.44 7.16 6.10		52.0 F 20.6 All Veh
OCal. Year: OVeh. Type: + Veh. Spc.: VMT Mix: OComposite E No-Mth HC: Exhst CC: Exhst NOX:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a	I/M ti-tan. eformuli LDGT1 30.0 0.201 n Factor 1.77 17.67 1.74 are as c	of Jan. Regio Progra Frogra ated Ga LDGT2 30.C 0.088 rs (Gm/l 2.45 2.45 f Jan. Region Prograi	Ist of n: Low n: Yes n: No s: No LDGT 1.96 19.52 1.95 Lst of n: Low z: Yes	the ind Open HDGV 30.0 0.032 2.03 16.07 4.52 the ind	dicated Altiphient: cating! LDDV 30.0 6.062 0.34 0.91 0.94 dicated Alticated Alticated Alticated Alticated	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calenda	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079 1.44 7.16 6.10 ar year 500. Ft.	52.0 / 27.3 / MC 30.0 0.005 2.44 16.24 1.15	52.0 F 20.6 All Veh 1.56 14.85 2.09
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CC: Exhst NOX:	2010 An R LDGV 30.0 0.590 mission 1.36 13.63 1.51 ctors a 2010 Ant	1/M ti-tan. eformula LDGT1 30.6 0.201 n Factor 1.77 17.67 1.74 are as c	of Jan. Regio Progra Frogra ated Ga LDGT2 30.0 0.088 rs (Gm/l 2.40 23.72 2.45 f Jan. Region Program	Ist of n: Low m: Yes m: No s: No LDGT 1.96 19.52 1.95 Ist of n: Low z: Yes x: No	the ind Oper HDGV 30.0 0.032 2.03 16.07 4.52 the inc	dicated Altiphient: cating! LDDV 30.0 6.062 0.34 0.91 0.94 dicated Alticated Alticated Alticated Alticated	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calenda	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079 1.44 7.16 6.10 ar year 500. Ft.	52.0 / 27.3 / MC 30.0 0.005 2.44 16.24 1.15	52.0 F 20.6 All Veh 1.56 14.85 2.09
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CO: Exhst NOX: OEmission fa GCal. Year:	2010 An R LDGV 30.0 0.590 mission 1.36 13.63 1.51 ctors a 2010 Ant	are as I/M ti-tan. eformula LDGT1 30.6 0.201 n Factor 1.77 1.74 are as c I/M ii-tam. eformula	of Jan. Regio Progra Frogra ated Ga LDGT2 30.0 0.088 rs (Gm// 2.40 23.72 2.45 f Jan. Region Program Program ted Gas	Ist of n: Low m: Yes m: No s: No LDGT 1.96 19.52 1.95 Ist of n: Low z: Yes x: No s: No	the ind Oper HDGV 30.0 0.032 2.03 16.07 4.52 the inc	dicated Altiplient of the street of the stre	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calend: cude:	ar year 500. Ft 52.0 / 20.6 / HDDV 30.0 0.079 1.44 7.16 6.10 ar year 500. Ft. 52.0 / 20.6 /	52.0 / 27.3 / MC 30.0 0.005 2.44 16.24 1.15	1.56 14.85 2.09
OCal. Year: OVeh. Type: Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CO: Exhst NOX: OEmission fa OCal. Year:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a 2016 Ant Re LDGV	are as I/M ti-tan. eformuli LDGT1 30.6 0.201 n Factor 1.77 17.67 1.74 are as c I/M ii-tam. eformula LDGT1	of Jan. Regio Progra Frogra ated Ga LDGT2 30.C 0.088 cs (Gm// 2.45 f Jan. Region Program Program ted Gas LDGT2	Ist of n: Low n: Yes m: No s: No LDGT 1.96 19.52 1.95 Lst of n: Low z: Yes t: No LDGT	the ind Oper HDGV 30.0 0.032 2.03 16.07 4.52 the ind Oper HDGV	dicated Altipole Alti	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calende: LDDT calende: LDDT	ar year 500. Ft 52.0 / 20.6 / HDDV 30.0 0.079 1.44 7.16 6.10 ar year 500. Ft 20.6 /	52.0 / 27.3 / MC 30.0 0.005 2.44 1.15 52.0 / 27.3 /	1.56 14.85 2.09
OCal. Year: OVeh. Type: Veh. Spd.: VMT Mix: OComposite B No-Mth HC: Exhst CO: Exhst NOX: OEmission fa CCal. Year: OVeh. Type: Veh. Spd.:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a 2016 Ant Re LDGV	are as I/M ti-tan. eformula 30.0 0.201 n Factor 1.77 17.67 1.74 are as c I/M i-tam. aformula LDGTI	of Jan. Regio Progra Frogra ated Ga LDGT2 30.C 0.088 rs (Gm/l 2.40 23.72 2.45 f Jan. Region Program ted Gas LDGT2	Ist of n: Low n: Yes n: No s: No LDGT 1.96 19.52 1.95 Ist of n: Low z: Yes x: No s: No LDGT	the ind Open HDGV 30.0 0.032 2.03 16.07 4.52 the inc Open HDGV	dicated Altiinbient; cating! LDDV 30.0 6.062 6.34 6.91 6.94 ilicated Altiithent Tating H	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calenda cude: LDDT 33.6	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079 1.44 7.16 6.16 ar year 500. Ft. 20.6 / EDDV	52.0 / 27.3 / MC 30.0 0.005 2.44 16.24 1.15 52.0 / 27.3 /	1.56 14.85 2.09
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CO: Exhst NOX: OEmission fa OCal. Year: OVeh. Type: Veh. Spd.: VMT Mix:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a 2016 Anterior Re LDGV	are as I/M ti-tan. eformula 20.0 0.201 n Factor 1.77 17.67 1.74 are as c I/M i-tam. lDGT1 25.0 0.201	of Jan. Regio Progra Frogra ated Ga LDGT2 30.C 0.088 cs (Gm/l 2.45 f Jan. Region Program Program ted Gast LDGT2 35.6 0.088	Ist of n: Low n: Yes n: No s: No LDGT 1.96 19.52 1.95 Lst of n: Low z: Yes z: No s: No LDGT	the ind Open HDGV 30.0 0.032 2.03 16.07 4.52 the ind Open HDGV	dicated Altiinbient; cating! LDDV 30.0 6.062 6.34 6.91 6.94 ilicated Altiithent Tating H	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calenda cude: LDDT 33.6	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079 1.44 7.16 6.16 ar year 500. Ft. 20.6 / EDDV	52.0 / 27.3 / MC 30.0 0.005 2.44 16.24 1.15 52.0 / 27.3 /	1.56 14.85 2.09
OCal. Year: OVeh. Type: Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CO: Exhst NOX: OEmission fa OCal. Year: Veh. Type: Veh. Spd.: Veh. Spd.: Veh. Spd.:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a 2016 Anterior Re LDGV	are as I/M ti-tan. eformula 20.0 0.201 n Factor 1.77 17.67 1.74 are as c I/M i-tam. lDGT1 25.0 0.201	of Jan. Regio Progra Frogra ated Ga LDGT2 30.C 0.088 cs (Gm/l 2.45 f Jan. Region Program Program ted Gast LDGT2 35.6 0.088	Ist of n: Low n: Yes n: No s: No LDGT 1.96 19.52 1.95 Lst of n: Low z: Yes z: No s: No LDGT	the ind Open HDGV 30.0 0.032 2.03 16.07 4.52 the ind Open HDGV	dicated Altiinbient; cating! LDDV 30.0 6.062 6.34 6.91 6.94 ilicated Altiithent Tating H	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calenda cude: LDDT 33.6	ar year 500. Ft 52.0 / 20.6 / HDDV 36.0 0.079 1.44 7.16 6.16 ar year 500. Ft. 20.6 / EDDV	52.0 / 27.3 / MC 30.0 0.005 2.44 16.24 1.15 52.0 / 27.3 /	1.56 14.85 2.09
OCal. Year: OVeh. Type: Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CO: Exhst NOX: OEmission fa OCal. Year: Veh. Type: Veh. Spd.: Veh. Spd.: Veh. Spd.:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors & 2016 Ant Re LDGV	are as I/M ti-tan. eformula LDGT1 30.6 0.201 n Factor 1.77 17.67 1.74 are as c I/M ii-tam. eformula LDGT1 35.0 0.201 Factor	of Jan. Regio Progra Ated Ga LDGT2 30.C 0.088 cs (Gm// 2.45 f Jan. Region Program Program LDGT2 35.C 0.088 cs (Gm// 0.088 cs (Gm// 0.088	Ist of n: Low m: Yes m: No s: No LDGT 1.96 19.52 1.95 Ist of c: Low L: Yes n: No LDGT	the ind Open HDGV 30.0 0.032 2.03 16.07 4.52 the inc Oper HDGV 35.0 0.032	dicated Altipole Alti	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calend tude: LDDT 35.0 0.003	ar year 500. Ft 52.0 / 20.6 / HDDV 30.0 0.079 1.44 7.16 6.10 ar year 52.0 / EDDV 35.0 0.079	52.0 / 27.3 / MC 30.0 0.005 2.44 1.15 52.0 / 27.3 / MC 35.0 0.005	52.0 F 20.6 All Veh 1.56 14.85 2.09 52.0 F 20.6
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CO: Exhst NOX: OEmission fa GCal. Year: Veh. Spd.: VMT Mix: OComposite Bn No-Mth HC: Exhst CO:	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a 2010 Ant Re LDGV	I/M ti-tan. eformula 20.0 0.201 n Factor 1.77 1.74 are as c I/M ii-tam. eformula LDGT1 25.0 0.201 Factor 1.60 14.77	of Jan. Regio Progra Progra ated Ga LDGT2 30.0 0.088 cs (Gm// 2.40 23.72 2.45 f Jan. Region Prograt Prograt LDGT2 35.0 0.088 cs (Gm//) 2.16 19.88	Ist of n: Low m: Yes m: No s: No LDGT 1.96 19.52 1.95 Ist of n: Low L: Yes x: No LDGT 1.77 16.33	the ind Oper HDGV 30.0 0.032 2.03 16.07 4.52 the ind Oper HDGV 35.0 0.032	dicated Altiple Altipl	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calend: LDDT 35.0 0.003	ar year 500. Ft 52.0 / 20.6 / HDDV 30.0 0.079 1.44 7.16 6.10 ar year 500. Ft. 52.0 / EDDV 35.0 0.079 1.26 6.20	52.0 / 27.3 / MC 30.0 0.005 2.44 1.15 52.0 / 27.3 / MC 35.0 0.005	52.0 F 20.6 All Veh 1.56 14.85 2.09 52.0 F 20.6 All Veh
OCal. Year: OVeh. Type: + Veh. Spd.: VMT Mix: OComposite E No-Mth HC: Exhst CC: Exhst NOX: OEmission fa OCal. Year: OVeh. Type: Veh. Spd.: VHT Mix: OComposite Br	2010 An R LDGV 30.C 0.590 mission 1.36 13.63 1.51 ctors a 2010 Ant Re LDGV	I/M ti-tan. eformula 20.0 0.201 n Factor 1.77 1.74 are as c I/M ii-tam. eformula LDGT1 25.0 0.201 Factor 1.60 14.77	of Jan. Regio Progra Progra ated Ga LDGT2 30.0 0.088 cs (Gm// 2.40 23.72 2.45 f Jan. Region Prograt Prograt LDGT2 35.0 0.088 cs (Gm//) 2.16 19.88	Ist of n: Low m: Yes m: No s: No LDGT 1.96 19.52 1.95 Ist of n: Low L: Yes x: No LDGT 1.77 16.33	the ind Oper HDGV 30.0 0.032 2.03 16.07 4.52 the ind Oper HDGV 35.0 0.032	dicated Altiple Altipl	calend tude: Temp: Mode: LDDT 30.0 0.003 0.47 1.01 1.06 calend: LDDT 35.0 0.003	ar year 500. Ft 52.0 / 20.6 / HDDV 30.0 0.079 1.44 7.16 6.10 ar year 500. Ft. 52.0 / EDDV 35.0 0.079 1.26 6.20	52.0 / 27.3 / MC 30.0 0.005 2.44 1.15 52.0 / 27.3 / MC 35.0 0.005	52.0 F 20.6 All Veh 1.56 14.85 2.09 52.0 F 20.6 All Veh

		I/M nti-tam. Reformul	Program	m: No	0pe	mbient rating	Temp: Mode:	52.0 / 20.6 /	52.0 27.3	/ 52.0 F / 20.6
0Veh. T y pe:	LDGV	LDGT1	LDGT2	LDGT	HDGV					
Veh. Spd.:	36.0	36.0 0 0.201	36.0		36.0	36.0	36.0	36.0	3€.0	 K
OComposite	. V.DJ Rajeci	v V.ZVI on Racto	0,000 1,000 pe	ا _ه ۱ ۲	0.000	V.VV.	. 0.003	9.013	0.00	J
No-Mth HC:	1 18	on racco	15 (UH/E 9 11	1 77	1.72	0.29	0.40	1.23	2.24	1.36
Exhst CO:	10.67	14.29	19.24	15.80	13.80	0.77	0.85	6.06	13.09	11.85
Exhst NOX:	1.53	1.74	2.46	1.96	4.74	0.93	1.06	6.06	1.23	2.11
OEmission f	actors	are as	of Jan.	1st of	the in	dicated	calend	ar year		
OCal. Year:	2010	- 1.4	Region	i: Low		Alti	tude:	500. Pt		
		1/8	Program	ı: Yes	A	mblent	lemp:	52.5 /	02.0	7 02.0 5
		nti-tam.			Upe	rating	Mode:	2010 /	61.5	40.0
0 W - 1		leformula 'nomi			noan	T DDJ;	ייט מיי	unnu	עפ	All Vak
OVeh. Type:										
veh. Spc.: VMT Kix:	40.0	40.0	46.0		40.0	40.0	46.0	40.0	46.0	
					0.032	0.002	0.003	0.079	0.008	;
\emptyset Composite	Emissio	n Factor	rs (Gm/M	lile)						
No-Mth HC:	1.09	1,46	: 97	1.62	1.58	0.27	6.37	1.18	2.14	1.26
Exhat CO:	9.18	12,59	17.00	13.94	13.03	C.7i	0.79	0.62	11,00	10.37
Exhat MOX:	1.54	1.75	3,47	1,91	4.88	6.90	1.05	16:0	2 (4,14
OEmission f	actors	are as c	f Jan.	ist of	the in	iicated	calend	ar year		
OGal. Year:	2010		Region	: Low		Alti	tude:	500. Ft	•	
		I/H	Program	: Yes	AI	bient	Temp:	52.0 /	52.0 /	52.0 F
	An	ti-tam.	Program	: No	Ope	rating	Hode:	20.t /	27.3 /	20.6
OVeh. Type:		eformula DOCTI			HDGV	LDDV	LDDT	HDDV	MC	All Veh
t Veh. Spd.: VMT Mix:	42.0	42.0	42.6		42.6	43.0	42.0	72.ĉ	42.0	
VMT Mix:	0.590	0.201	0.088		0.032	0.002	0.003	0.079	0.005	
OComposite	Emissio	n Factor	s (Gr/K	ile!						
No-Mth HC:	1.05	1.42	1,91	1,57	1.52	0.26	0.35	1.09	2.10	1.22
Exhst CC:	8.55	11.87	16.04	15.14	12.83	0.69	0.77	5.47	11.10	9.74
Exhst NOX:	1.54	1.76	2.47	1.97	4.96	€.97	1.10	6.34	1.28	2.15
OEmission fa	ictors	are as o	f Jan.	lst of	the inc	licated	calenda	ır year.	·····	
OGal. Year:	2010		Region	LOW		Alti	tude 😸 🖯	i00. Pt.	5 0.7	**
	,	I/M	Program	: Yes	A	bient :	lemp:	52.0 /	02.0 /	52.0 F
	An	ti-tam.	Program	i NC	Oper	ating l	toae:	20.6 /	21.5 /	20.0
OVen. Type:		eformula LDGTI			HDGV	LDDV	iddi	HDDV	MC	All Veh
Veh. Spd.: VMT Mix:	44.0	44.6	44.0		44.0	44.0	44.0	44.0	44.6	~~~~
VMT Mix:	0.590	0.201	0.088		0.032	0.002	0.003	0.079	0.005	
OComposite E	missio	Factor	s (Gm/K)	ile!						
No-Mth HC:	1.02	1.38	1.85	1.52	1.48	0.25	0.34	1.05	2.08	1.13
Exhst CO:	7.97	11.21	15.16 .	12.41	12.74	6.68	6.76	5.36	10.65	3.18
Exhat NOX:	1,55	1.75	2.47	1.97	5.03	1.00	1.12	6.50	1.29	2.17
OEcission fa	ctors a	are as o	f Jan	ist of	the ind	icated	calenda	r year.		
CCal. Year:	2010		Region	Low		Altit	ude: 5	90. Pt.		
		I/K I	Program:	: Yes	Ϋ́	bient 1	err:	52.3 /	52.0 /	52.0 F
	Art	i-tan. i	Program:	Ho .	úper	ating M	loge:	23.6 /	47 8 /	20.6
OVel. Type:	Re	eformulat	ted Gas:	: No						
			-			•	•		•	

Veh. Spd.:	45.0	45.0	45.0		45.0	45.0	45.0	45.0	45.0	M7454 AV W
VHT Mix:	0.590	0.201	0.088		0.032	0.002	0.003	0.079	0.005	
OComposite Emission Factors (Gm/Hile)										
No-Mth HC:	1.00	1.36	1.83	1.50	1.46	0.24	0.34	1.03	2.07	1.16
Exhst CO:	7.70	10.90	14.76	12.08	12.74	0.67	0.75	5.33	10.46	8.92
Exhst NOX:	1.55	1.75	2.47	1.97	5.07	1.01	1.15	6.60	1.30	2.18

MEMORANDOM

Date: September 18, 1991

To: David Twiddy, PD&E Administrator

From: James H. Edwards, Transportation Planning Manager By: Fawzi Bitar, Transportation Planning Coordinator

Copies to: File, Dan Doebler

FAP No : IR-9999 (43) County : Hillsborough

The above referenced project has a District-Wide number, that is why it was not in the Tampa MPO's Transportation Improvement Program (TIP), Fiscal Year 1987/88 through 91/92. It is part of their 2010 Long Range Transportation Plan.

/FKB